Citation: | Xiaoxiao Su, Meng Yan, Ruyun Ma. GLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR FIRST-ORDER DISCRETE PERIODIC BOUNDARY VALUE PROBLEMS WITH INDEFINITE WEIGHT[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 119-132. doi: 10.11948/20230082 |
We are concerned with the first-order discrete periodic boundary value problem
$ \begin{align} \left\{\begin{array}{ll} -D u(t)= \lambda a(t) f(u(t)),\; \; \; t\in\{1,2,\cdots,T\},\\ u(0)=u(T), \end{array} \right.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(P) \end{align} $
where $ \lambda>0 $ is a parameter, $ T>2 $ is an integer, $ D u(t)=u(t+1)-u(t) $, $ a:\{1,2,\cdots,T\}\to\mathbb{R} $, $ f:\mathbb{R}\to\mathbb{R} $ is continuous and $ f(0)=0 $. Depending on the behavior of $ f $ near 0 and $ \infty $, we obtain that there exist $ 0<\lambda_*\leq\lambda^* $ such that for any $ \lambda>\lambda^* $, problem $ (P) $ possesses at least two positive solutions, while it has no solution for $ \lambda\in(0,\lambda_*) $. The proof of our main results are based upon bifurcation technique.
[1] | R. P. Agarwal, On multipoint boundary value problems for discrete equations, J. Math. Anal. Appl., 1983, 96(2), 520-534. doi: 10.1016/0022-247X(83)90058-6 |
[2] | A. Boscaggin and G. Feltrin, Positive periodic solutions to an indefinite Minkowski-curvature equation, J. Differential Equations, 2020, 269(7), 5595-5645. doi: 10.1016/j.jde.2020.04.009 |
[3] | A. Boscaggin, G. Feltrin and F. Zanolin, Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case, Proc. Roy. Soc. Edinburgh Sect. A, 2016, 146(3), 449-474. doi: 10.1017/S0308210515000621 |
[4] | A. Boscaggin and F. Zanolin, Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight, J. Differential Equations, 2012, 252(3), 2900-2921. doi: 10.1016/j.jde.2011.09.011 |
[5] | A. Cabada, V. Otero-Espinar and R. L. Pouso, Existence and approximation of solutions for first-order discontinuous difference equations with nonlinear global conditions in the presence of lower and upper solutions, Comput. Math. Appl., 2000, 39(1-2), 21-33. doi: 10.1016/S0898-1221(99)00310-7 |
[6] | E. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J., 1974, 23, 1069-1076. doi: 10.1512/iumj.1974.23.23087 |
[7] | D. Djurčić and A. Torgašev, Strong asymptotic equivalence and inversion of functions in the class $K_c$, J. Math. Analysis Applic., 2001, 255(2), 383-390. doi: 10.1006/jmaa.2000.7083 |
[8] | W. Guan, S. Ma and D. Wang, Periodic boundary value problems for first order difference equations, Electron. J. Qual. Theory Differ. Equ., 2012, 52, 1-9. |
[9] | P. Korman and D. S. Schmidt, Global solution curves for first order periodic problems with applications, Nonlinear Anal. Real World Appl., 2020, 56, 1-18. |
[10] | Y. Li, L. Zhu and P. Liu, Positive periodic solutions of nonlinear functional difference equations depending on a parameter, Comput. Math. Appl., 2004, 48(10-11), 1453-1459. doi: 10.1016/j.camwa.2004.08.006 |
[11] | Y. Lu, Positive periodic solutions of nonlinear first-order functional difference equations with a parameter, Electron. J. Differential Equations, 2011, 96, 1-9. |
[12] | Y. Lu and J. Wang, Continuum branch of one-signed periodic solutions of first-order functional equations involving the nonlinearity with zeros, Monatsh. Math., 2019, 190(4), 769-788. doi: 10.1007/s00605-019-01286-6 |
[13] | M. Ma and J. Yu, Existence of multiple positive periodic solutions for nonlinear functional difference equations, J Math. Anal. Appl., 2005, 305(2), 483-490. doi: 10.1016/j.jmaa.2004.11.010 |
[14] | R. Ma and Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal., 2009, 71(10), 4364-4376. doi: 10.1016/j.na.2009.02.113 |
[15] | R. Ma, T. Chen and Y. Lu, Positive periodic solutions of nonlinear first-order functional difference equations, Discrete Dyn. Nat. Soc., 2010. DOI: 10.1155/2010/419536. |
[16] | R. Ma, X. Su and Z. Zhao, Global structure of positive solutions for a Neumann problem with indefinite weight in Minkowski space, J. Fixed Point Theory Appl., 2023, 25(2), 1-13. |
[17] | L. Maia, N. EI Khattabi and M. Frigon, Existence and multiplicity results for first-order Stieltjes differential equations, Adv. Nonlinear Stud., 2022, 22(1), 684-710. doi: 10.1515/ans-2022-0038 |
[18] | S. Peng, Positive solutions for first order periodic boundary value problem, Appl. Math. Comput., 2004, 158(2), 345-351. |
[19] | P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7, 487-513. doi: 10.1016/0022-1236(71)90030-9 |
[20] | Y. N. Raffoul, Positive periodic solutions of nonlinear functional difference equations, Electron. J. Differential Equations, 2002, 55, 1-8. |
[21] | R. Schmidt, Über divergente Folgen und lineare Mittelbildungen, Math. Z., 1925, 22(1), 89-152. doi: 10.1007/BF01479600 |
[22] | J. Sugie, Number of positive periodic solutions for first-order nonlinear difference equations with feedback, Appl. Math. Comput., 2021, 391, 1-13. |
[23] | J. Sun, Positive solution for first-order discrete periodic boundary value problem, Appl. Math. Lett. 2006, 19(11), 1244-1248. doi: 10.1016/j.aml.2006.01.007 |
[24] | D. Wang, Multiple solutions of periodic boundary value problems for first-order difference equations, Bull. Aust. Math. Soc., 2008, 78(1), 1-11. doi: 10.1017/S0004972708000208 |