2024 Volume 14 Issue 1
Article Contents

Xiaoxiao Su, Meng Yan, Ruyun Ma. GLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR FIRST-ORDER DISCRETE PERIODIC BOUNDARY VALUE PROBLEMS WITH INDEFINITE WEIGHT[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 119-132. doi: 10.11948/20230082
Citation: Xiaoxiao Su, Meng Yan, Ruyun Ma. GLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR FIRST-ORDER DISCRETE PERIODIC BOUNDARY VALUE PROBLEMS WITH INDEFINITE WEIGHT[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 119-132. doi: 10.11948/20230082

GLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR FIRST-ORDER DISCRETE PERIODIC BOUNDARY VALUE PROBLEMS WITH INDEFINITE WEIGHT

  • Author Bio: Email: yanmeng161999@163.com(M. Yan); Email: ryma@xidian.edu.cn(R. Ma)
  • Corresponding author: Email: suxiaoxiao2856@163.com(X. Su) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12061064) and Shaanxi Fundamental Science Research Project for Mathematics and Physics (No. 22JSY018)
  • We are concerned with the first-order discrete periodic boundary value problem

    $ \begin{align} \left\{\begin{array}{ll} -D u(t)= \lambda a(t) f(u(t)),\; \; \; t\in\{1,2,\cdots,T\},\\ u(0)=u(T), \end{array} \right.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(P) \end{align} $

    where $ \lambda>0 $ is a parameter, $ T>2 $ is an integer, $ D u(t)=u(t+1)-u(t) $, $ a:\{1,2,\cdots,T\}\to\mathbb{R} $, $ f:\mathbb{R}\to\mathbb{R} $ is continuous and $ f(0)=0 $. Depending on the behavior of $ f $ near 0 and $ \infty $, we obtain that there exist $ 0<\lambda_*\leq\lambda^* $ such that for any $ \lambda>\lambda^* $, problem $ (P) $ possesses at least two positive solutions, while it has no solution for $ \lambda\in(0,\lambda_*) $. The proof of our main results are based upon bifurcation technique.

    MSC: 39A27, 39A28, 39A70
  • 加载中
  • [1] R. P. Agarwal, On multipoint boundary value problems for discrete equations, J. Math. Anal. Appl., 1983, 96(2), 520-534. doi: 10.1016/0022-247X(83)90058-6

    CrossRef Google Scholar

    [2] A. Boscaggin and G. Feltrin, Positive periodic solutions to an indefinite Minkowski-curvature equation, J. Differential Equations, 2020, 269(7), 5595-5645. doi: 10.1016/j.jde.2020.04.009

    CrossRef Google Scholar

    [3] A. Boscaggin, G. Feltrin and F. Zanolin, Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case, Proc. Roy. Soc. Edinburgh Sect. A, 2016, 146(3), 449-474. doi: 10.1017/S0308210515000621

    CrossRef Google Scholar

    [4] A. Boscaggin and F. Zanolin, Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight, J. Differential Equations, 2012, 252(3), 2900-2921. doi: 10.1016/j.jde.2011.09.011

    CrossRef Google Scholar

    [5] A. Cabada, V. Otero-Espinar and R. L. Pouso, Existence and approximation of solutions for first-order discontinuous difference equations with nonlinear global conditions in the presence of lower and upper solutions, Comput. Math. Appl., 2000, 39(1-2), 21-33. doi: 10.1016/S0898-1221(99)00310-7

    CrossRef Google Scholar

    [6] E. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J., 1974, 23, 1069-1076. doi: 10.1512/iumj.1974.23.23087

    CrossRef Google Scholar

    [7] D. Djurčić and A. Torgašev, Strong asymptotic equivalence and inversion of functions in the class $K_c$, J. Math. Analysis Applic., 2001, 255(2), 383-390. doi: 10.1006/jmaa.2000.7083

    CrossRef $K_c$" target="_blank">Google Scholar

    [8] W. Guan, S. Ma and D. Wang, Periodic boundary value problems for first order difference equations, Electron. J. Qual. Theory Differ. Equ., 2012, 52, 1-9.

    Google Scholar

    [9] P. Korman and D. S. Schmidt, Global solution curves for first order periodic problems with applications, Nonlinear Anal. Real World Appl., 2020, 56, 1-18.

    Google Scholar

    [10] Y. Li, L. Zhu and P. Liu, Positive periodic solutions of nonlinear functional difference equations depending on a parameter, Comput. Math. Appl., 2004, 48(10-11), 1453-1459. doi: 10.1016/j.camwa.2004.08.006

    CrossRef Google Scholar

    [11] Y. Lu, Positive periodic solutions of nonlinear first-order functional difference equations with a parameter, Electron. J. Differential Equations, 2011, 96, 1-9.

    Google Scholar

    [12] Y. Lu and J. Wang, Continuum branch of one-signed periodic solutions of first-order functional equations involving the nonlinearity with zeros, Monatsh. Math., 2019, 190(4), 769-788. doi: 10.1007/s00605-019-01286-6

    CrossRef Google Scholar

    [13] M. Ma and J. Yu, Existence of multiple positive periodic solutions for nonlinear functional difference equations, J Math. Anal. Appl., 2005, 305(2), 483-490. doi: 10.1016/j.jmaa.2004.11.010

    CrossRef Google Scholar

    [14] R. Ma and Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal., 2009, 71(10), 4364-4376. doi: 10.1016/j.na.2009.02.113

    CrossRef Google Scholar

    [15] R. Ma, T. Chen and Y. Lu, Positive periodic solutions of nonlinear first-order functional difference equations, Discrete Dyn. Nat. Soc., 2010. DOI: 10.1155/2010/419536.

    CrossRef Google Scholar

    [16] R. Ma, X. Su and Z. Zhao, Global structure of positive solutions for a Neumann problem with indefinite weight in Minkowski space, J. Fixed Point Theory Appl., 2023, 25(2), 1-13.

    Google Scholar

    [17] L. Maia, N. EI Khattabi and M. Frigon, Existence and multiplicity results for first-order Stieltjes differential equations, Adv. Nonlinear Stud., 2022, 22(1), 684-710. doi: 10.1515/ans-2022-0038

    CrossRef Google Scholar

    [18] S. Peng, Positive solutions for first order periodic boundary value problem, Appl. Math. Comput., 2004, 158(2), 345-351.

    Google Scholar

    [19] P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7, 487-513. doi: 10.1016/0022-1236(71)90030-9

    CrossRef Google Scholar

    [20] Y. N. Raffoul, Positive periodic solutions of nonlinear functional difference equations, Electron. J. Differential Equations, 2002, 55, 1-8.

    Google Scholar

    [21] R. Schmidt, Über divergente Folgen und lineare Mittelbildungen, Math. Z., 1925, 22(1), 89-152. doi: 10.1007/BF01479600

    CrossRef Google Scholar

    [22] J. Sugie, Number of positive periodic solutions for first-order nonlinear difference equations with feedback, Appl. Math. Comput., 2021, 391, 1-13.

    Google Scholar

    [23] J. Sun, Positive solution for first-order discrete periodic boundary value problem, Appl. Math. Lett. 2006, 19(11), 1244-1248. doi: 10.1016/j.aml.2006.01.007

    CrossRef Google Scholar

    [24] D. Wang, Multiple solutions of periodic boundary value problems for first-order difference equations, Bull. Aust. Math. Soc., 2008, 78(1), 1-11. doi: 10.1017/S0004972708000208

    CrossRef Google Scholar

Article Metrics

Article views(1219) PDF downloads(270) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint