2024 Volume 14 Issue 1
Article Contents

Yan Wu, Guanglan Wang. FRACTIONAL ADAMS-MOSER-TRUDINGER TYPE INEQUALITY WITH SINGULAR TERM IN LORENTZ SPACE AND $L^P$ SPACE[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 133-145. doi: 10.11948/20230094
Citation: Yan Wu, Guanglan Wang. FRACTIONAL ADAMS-MOSER-TRUDINGER TYPE INEQUALITY WITH SINGULAR TERM IN LORENTZ SPACE AND $L^P$ SPACE[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 133-145. doi: 10.11948/20230094

FRACTIONAL ADAMS-MOSER-TRUDINGER TYPE INEQUALITY WITH SINGULAR TERM IN LORENTZ SPACE AND $L^P$ SPACE

  • Author Bio: Email: wuyan@lyu.edu.cn(Y. Wu)
  • Corresponding author: Email: wangguanglan@lyu.edu.cn(G. Wang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12271232) and National Science Foundation of Shandong (ZR2022MA18)
  • For fractional derivatives $ (-\Delta)^{\frac{s}{2}} $, we establish Adams-Moser- Trudinger type inequalities with singular term $ \frac{1}{|x|^\alpha} $ under Lorentz norm and $ L^p $ norm on bounded open domains, and get the sharpness of all inequalities. Furthermore, we obtain the sharpness with a more general method.

    MSC: 35B33, 35J60
  • 加载中
  • [1] D. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math., 1988, 128, 383–398.

    Google Scholar

    [2] Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, Nolinear Differential Equations Application, 2007, 13, 585–603.

    Google Scholar

    [3] Adimurthi and K. Tintarev, On a version of Moser-Trudinger inequality with Mobius shift invariance, Calc. Var. Partial Differential Equations, 2010, 39, 203–212. doi: 10.1007/s00526-010-0307-5

    CrossRef Google Scholar

    [4] A. Alberico, Moser type inequalities for higher-order derivatives in Lorentz spaces, Potential Anal., 2008, 28, 389–400. doi: 10.1007/s11118-008-9085-5

    CrossRef Google Scholar

    [5] A. Alvino, V. Ferone and G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal., 1996, 5, 273–299. doi: 10.1007/BF00282364

    CrossRef Google Scholar

    [6] R. Arora, J. Giacomoni, T. Mukherjee and K. Sreenadh, Adams-Moser-Trudinger inequality in the Cartesian product of Sobolev spaces and its applications, Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A Matematicas, 2020, 111, 114–118.

    Google Scholar

    [7] A. Cianchi, V. Musil and L. Pick, On the existence of extremals for Moser-type inequalities in Gauss space, International mathematics research notices: IMRN, 2022, 2, 1494–1453.

    Google Scholar

    [8] S. Cingolani and T. Weth, Trudinger-Moser-type inequality with logarithmic convolution potentials, The Journal of the London Mathematical Society, 2022, 105, 1897–1935. doi: 10.1112/jlms.12549

    CrossRef Google Scholar

    [9] M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.

    Google Scholar

    [10] S. Helgason, Geometric Analysis on Symmetric Spaces, Second edition, Mathematical Surveys and Monographs, 39, American Mathematical Society, Providence, RI, 2008.

    Google Scholar

    [11] J. Huang, P. Li, Y. Liu and S. Shi, Fractional heat semigroups on metric measure spaces with finite densities and applications to fractional dissipative equations, Nonlinear Analysis, 2020, 195, 1–45.

    Google Scholar

    [12] A. Hyder, Moser functions and fractional Moser-Trudinger type inequalities, Nonlinear Anal., 2016, 146, 185–210. doi: 10.1016/j.na.2016.08.024

    CrossRef Google Scholar

    [13] S. M. Imran, S. Asghar and M. Mushtaq, Mixed Convection Flow Over an Unsteady Stretching Surface in a Porous Medium with Heat Source, Mathematical Problems in Engineering, 2012. DOI: 10.1155/2012/485418.

    CrossRef Google Scholar

    [14] N. Lam and G. Lu, Sharp singular Adams inequalities in high order Sobolev spaces, Methods Appl. Anal., 2012, 19, 243–266. doi: 10.4310/MAA.2012.v19.n3.a2

    CrossRef Google Scholar

    [15] C. Li and J. Llibre, Uniqueness of limit cycles for Lienard differential equations of degree four, J. Diff. Eqs., 2012, 252, 3142–3162. doi: 10.1016/j.jde.2011.11.002

    CrossRef Google Scholar

    [16] E. H. Lieb and M. Loss, Analysis, Second edition. Graduate Studies in Mathematics. 14. American Mathematical Society, Providence, RI, 2001. ISBN: 0-8218-2783-9.

    Google Scholar

    [17] G. Lu and H. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Adv. Nonlinear Stud., 2016, 16, 581–601. doi: 10.1515/ans-2015-5046

    CrossRef Google Scholar

    [18] G. Lu, H. Tang and M. Zhu, Best constants for Adams' inequalities with the exact growth condition in $\mathbb{R}^n$, Adv. Nonlinear Stud., 2015, 15, 763–788. doi: 10.1515/ans-2015-0402

    CrossRef $\mathbb{R}^n$" target="_blank">Google Scholar

    [19] G. Mancini and K. Sandeep, Moser-Trudinger inequality on conformal discs, Commun. Contemp. Math., 2010, 12, 1055–1068. doi: 10.1142/S0219199710004111

    CrossRef Google Scholar

    [20] L. Martinazzi, Fractional Admas-Moser-Trudinger type inequalities, Nonlinear Anal., 2015, 127, 263–278. doi: 10.1016/j.na.2015.06.034

    CrossRef Google Scholar

    [21] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 1971, 20, 1077–1092. doi: 10.1512/iumj.1971.20.20101

    CrossRef Google Scholar

    [22] R. O'Neil, Convolution operators and $L(p, q)$ spaces, Duke Math. J., 1963, 30, 129–142.

    $L(p, q)$ spaces" target="_blank">Google Scholar

    [23] S. I. Pohozaev, The Sobolev embedding in the case $pl=n$, Proceeding of the Technical Scientific Conference on Advances of Scientific Research 1964–1965. Mathematics Section, Moskov. Energet. Inst., 1965, 158–170.

    Google Scholar

    [24] P. A. Ruiz and F. Baudoin, Gagliardo-Nirenberg, Trudinger-Moser and Morrey inequalities on Dirichlet spaces, Journal of Mathematical Analysis and Applications, 2021, 2, 202–227.

    Google Scholar

    [25] S. Shi, Some integrability estimates for solutions of the fractional p-Laplace equation, J. Nonlinear Sci. Appl., 2017, 10, 5585–5592. doi: 10.22436/jnsa.010.10.38

    CrossRef Google Scholar

    [26] S. Shi, Some notes on supersolutions of fractional p-Laplace equation, J. Math. Anal. Appl., 2018, 463, 1052–1074. doi: 10.1016/j.jmaa.2018.03.064

    CrossRef Google Scholar

    [27] S. Shi and Z. Fu, Compactness of the commutators of fractional hardy operator with rough kernel, Analysis in Theory and Applications, Anal. Theory Appl., 2021, 37, 347–361. doi: 10.4208/ata.2021.lu80.05

    CrossRef Google Scholar

    [28] S. Shi, L. Zhang and G. Wang, Fractional non-linear regularity, Potential and Balayage, The Journal of Geometric Analysis, 2022, 32, Art. Number 221.

    Google Scholar

    [29] N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech., 1967, 17, 473–484.

    Google Scholar

    [30] G. Wang and D. Ye, A Hardy-Moser-Trudinger inequality, Adv. Math., 2012, 230, 294–320. doi: 10.1016/j.aim.2011.12.001

    CrossRef Google Scholar

    [31] J. Xiao and Z. Zhai, Fractional Sobolev, Moser-Trudinger, Moser-Sobolev inequality under lorentz norms, J. Math. Sci., 2010, 166, 357–376. doi: 10.1007/s10958-010-9872-6

    CrossRef Google Scholar

    [32] V. I. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Sov. Math. Docl., 1961, 2, 746–749.

    Google Scholar

Article Metrics

Article views(1469) PDF downloads(313) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint