2024 Volume 14 Issue 1
Article Contents

Hajri Imen, Fethi Ben Belgacem. CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 146-161. doi: 10.11948/20230104
Citation: Hajri Imen, Fethi Ben Belgacem. CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 146-161. doi: 10.11948/20230104

CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM

  • In this article, we introduce and study three numerical methods for the Dirichlet Monge-Ampère equation in two dimensions. The approaches consist in considering new equivalent problems. In the first method (method A) the equivalent problem is discretized by a wide stencil finite difference discretization and monotone schemes are obtained. Hence, we apply the Barles-Souganidis theory to prove the convergence of the schemes and the Damped Newtons method is used to compute the solutions of the schemes. In the last two methods (B and C) we introduce two fixed point operators. Finally, some numerical results are illustrated.

    MSC: 35J99, 65N06
  • 加载中
  • [1] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 1991, 4(3), 271–283. doi: 10.3233/ASY-1991-4305

    CrossRef Google Scholar

    [2] F. B. Belgacem, Optimization approach for the Monge-Ampère equation, Acta Mathematica Scientia., 2018, 38(4), 1285–1295. doi: 10.1016/S0252-9602(18)30814-2

    CrossRef Google Scholar

    [3] J. D. Benamou, B. D. Froese and A. M. Oberman, Two numerical methods for the elliptic Monge-Ampère equation, ESAIM: Math. Model. Numer. Anal., 2010, 44(4), 271–293.

    Google Scholar

    [4] R. J. Berman, Convergence rates for discretized Monge-Ampère equations and quantitative stability of optimal transport, Found Comput. Math., 2021, 21, 1099–1140. doi: 10.1007/s10208-020-09480-x

    CrossRef Google Scholar

    [5] M. W. M. C. Bertens, et al., Numerical methods for the hyperbolic Monge-Ampère equation based on the method of characteristics, Partial Differential Equations and Applications, 2022, 52(3), 1–42.

    Google Scholar

    [6] G. Bonnet and J. M. Mirebeau, Monotone discretization of the Monge-Ampère equation of optimal transport, ESAIM: M2AN., 2022, 56, 815–865. doi: 10.1051/m2an/2022029

    CrossRef Google Scholar

    [7] C. J. Budd and J. F. Williams, Moving mesh generation using the parabolic Monge-Ampère equation, SIAM J. Sci. Comput., 2009, 31(5), 3438–3465. doi: 10.1137/080716773

    CrossRef Google Scholar

    [8] E. Calabi, Complete affine hyperspheres. I, Symposia Mathematica., 1972, 10, 19–38.

    Google Scholar

    [9] S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math., 1986, 39(6), 839–866. doi: 10.1002/cpa.3160390606

    CrossRef Google Scholar

    [10] E. J. Dean and R. Glowinski, An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions, Electron. Trans. Numer. Anal., 2006, 22, 779–784.

    Google Scholar

    [11] E. J. Dean and R. Glowinski, On the numerical solution of the elliptic Monge-Ampère equation in dimension two: A least-squares approach, in Partial differential equations, 2008, 16, 887–892.

    Google Scholar

    [12] E. J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type, Comput. Methods Appl. Mech. Engrg., 2006, 195(13–16), 1344–1386. doi: 10.1016/j.cma.2005.05.023

    CrossRef Google Scholar

    [13] G. L. Delzanno, et al., An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization, J. Comput. Phys., 2008, 227(23), 9841–9864. doi: 10.1016/j.jcp.2008.07.020

    CrossRef Google Scholar

    [14] X. Feng and M. Neilan, Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method, SIAM J. Numer. Anal., 2009, 47(2), 1226–1250. doi: 10.1137/070710378

    CrossRef Google Scholar

    [15] J. M. Finn, et al., Grid generation and adaptation by Monge-Kantorovich optimization in two and three dimensions, in Proceedings of the 17th International Meshing Roundtable, 2008, 551–568.

    Google Scholar

    [16] B. D. Froese and A. M. Oberman, Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher, SIAM J. Numer. Anal., 2011, 49, 1692–1714. doi: 10.1137/100803092

    CrossRef Google Scholar

    [17] T. Glimm and V. Oliker, Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem, J. Math. Sci. (N. Y. ), 2003, 117(3), 4096–4108. doi: 10.1023/A:1024856201493

    CrossRef Google Scholar

    [18] C. E. Gutiérrez, The Monge-Ampère equation, Progress in Nonlinear Differential Equations and their Applications, 2001, 44, 31–43.

    Google Scholar

    [19] S. Haker, et al., Mass preserving mappings and image registration, in MICCAI '01: Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2001, 120–127.

    Google Scholar

    [20] S. Haker, et al., Optimal mass transport for registration and warping, Int. J. Comput. Vision, 2004, 60(3), 225–240. doi: 10.1023/B:VISI.0000036836.66311.97

    CrossRef Google Scholar

    [21] Q. Li and Z. Liu, Cascadic Newton's method for the elliptic Monge-Ampère equation, International Journal of Wavelets, Multiresolution and Information Processing, 2020, 18(3), 990–996.

    Google Scholar

    [22] H. Liu, S. Leung and J. Qian, An efficient operator-splitting method for the eigenvalue problem of the Monge-Ampère equation, Commun. Optim. Theory, 2022, 1–22.

    Google Scholar

    [23] R. H. Nochetto, D. Ntogkas and W. Zhang, Two-scale method for the Monge-Ampère equation: Convergence to the viscosity solution, Mathematics of computation, 2019, 88(316), 1085–1109.

    Google Scholar

    [24] A. M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems, SIAM J. Numer. Anal., 2006, 44(2), 879–895. doi: 10.1137/S0036142903435235

    CrossRef Google Scholar

    [25] A. M. Oberman, Computing the convex envelope using a nonlinear partial differential equation, Math. Models Methods Appl. Sci., 2008, 18(5).

    Google Scholar

    [26] A. M. Oberman, Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian, Discrete Contin. Dyn. Syst. Ser. B, 2008, 10(1), 221–238.

    Google Scholar

    [27] A. M. Oberman and L. Silvestre, The Dirichlet problem for the convex envelope, Trans. Amer. Math. Soc., 2010, 363(11), 5871–5886.

    Google Scholar

    [28] V. I. Oliker and L. D. Prussner, On the numerical solution of the equation $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = f$ and its discretizations, I, Numer. Math., 1988, 54(3), 271–293.

    $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = f$ and its discretizations, I" target="_blank">Google Scholar

    [29] G. D. Philippis and A. Figalli, The Monge-Ampère equation and its link to optimal transportation, Bull. Amer. Math. Soc. (N. S. ), 2014, 51(4), 33–46.

    Google Scholar

    [30] A. V. Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedicata, 1972, 1(1).

    Google Scholar

    [31] T. U. Rehman, et al., 3D nonrigid registration via optimal mass transport on the GPU, Med Image Anal, 2009, 13(6), 931–940. doi: 10.1016/j.media.2008.10.008

    CrossRef Google Scholar

    [32] J. Siltakoski, Equivalence of viscosity and weak solutions for the normalized $p(x)$-Laplacian, Calc. Var., 2018, 57.

    Google Scholar

    [33] N. S. Trudinger and X. -J. Wang, The Bernstein problem for affine maximal hypersurfaces, Invent. Math., 2000, 140(2), 399–422. doi: 10.1007/s002220000059

    CrossRef Google Scholar

    [34] N. S. Trudinger and X. -J. Wang, Affine complete locally convex hypersurfaces, Invent. Math., 2002, 150(1), 45–60. doi: 10.1007/s00222-002-0229-8

    CrossRef Google Scholar

    [35] N. S. Trudinger and X. -J. Wang, The affine Plateau problem, J. Amer. Math. Soc., 2005, 18(2), 253–289. doi: 10.1090/S0894-0347-05-00475-3

    CrossRef Google Scholar

    [36] V. Zheligovsky, et al., The Monge-Ampère equation: Various forms and numerical solution, J. Comput. Phys., 2010, 229(13), 5043–5061. doi: 10.1016/j.jcp.2010.03.025

    CrossRef Google Scholar

Figures(4)  /  Tables(3)

Article Metrics

Article views(1669) PDF downloads(262) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint