Citation: | Yu Dong, Zaihong Jiang, Li Li. EXISTENCE OF WEAK SOLUTIONS TO THE BGK EQUATION AND AN APPROXIMATE CONSERVATION LAWS WITH LARGE INITIAL DATA[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 162-181. doi: 10.11948/20230129 |
This paper studies the Cauchy problem of a BGK model and the corresponding nonlinear hyperbolic conservation laws. Given bounded initial data for the kinetic equation, the existence of weak solutions to the BGK model is obtained by the time-splitting method. Moreover, weak solutions to the limiting hyperbolic system are obtained by passing the relaxation parameter to zero in a modified BGK model.
[1] | R. A. Adams and J. F. Fournier, Sobolev Spaces. Second Edition, Pure and Applied Mathematics 140. Amsterdam: Academic Press, 2003, xiv+305pp. |
[2] | R. Bianchini, Relative entropy in diffusive relaxation for a class of discrete velocities BGK models, Commun. Math. Sci., 2021, 19(1), 39–54. doi: 10.4310/CMS.2021.v19.n1.a2 |
[3] | S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math., 2005, 161(1), 223–342. doi: 10.4007/annals.2005.161.223 |
[4] | F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory, Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, 2000, x+162pp. |
[5] | A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford University Press, Oxford, 2000, xii+250pp. |
[6] | P. Buttá, M. Hauray and M. Pulvirenti, Particle approximation of the BGK equation, Arch. Ration. Mech. Anal., 2021, 240(2), 785–808. doi: 10.1007/s00205-021-01621-y |
[7] | G. Q. Chen and Y. Lu, The study on application way of the compensated compactness theory, Chinese Sci. Bull., 1989, 34, 15–19. doi: 10.1360/csb1989-34-1-15 |
[8] | J. F. Coulombel and T. Goudon, Entropy-based moment closure for kinetic equations, Riemann problem and invariant regions, J. Hyperbolic Differ. Equ., 2006, 3(4), 649–671. doi: 10.1142/S0219891606000951 |
[9] | R. E. Edwards, Functional Analysis. Theory and Applications, New York-Toronto-London: Holt, Rinehart and Winston, 1965, xiii+781pp. |
[10] | J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 1965, 18, 697–715. doi: 10.1002/cpa.3160180408 |
[11] | H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem, Expo. Math., 2010, 28(4), 385–394. doi: 10.1016/j.exmath.2010.03.001 |
[12] | J. Hua, Z. Jiang and T. Yang, A new Glimm functional and convergence rate of Glimm scheme for general systems of hyperbolic conservation laws, Arch. Ration. Mech. Anal., 2010, 196(2), 433–454. doi: 10.1007/s00205-009-0266-1 |
[13] | B. H. Hwang, T. Ruggeri and S. B. Yun, On a relativistic BGK model for polyatomic gases near equilibrium, SIAM J. Math. Anal., 2022, 54(3), 2906–2947. doi: 10.1137/21M1404946 |
[14] | P. D. Lax, Hyperbolic systems of conservation laws. II, Commun. Pure Appl. Math., 1957, 10, 537–566. doi: 10.1002/cpa.3160100406 |
[15] | C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 1996, 83(5–6), 1021–1065. doi: 10.1007/BF02179552 |
[16] | T. P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys., 1977, 57, 135–148. doi: 10.1007/BF01625772 |
[17] | T. P. Liu and T. Yang, Weak solutions of general systems of hyperbolic conservation laws, Comm. Math. Phys., 2002, 230(2), 289–327. doi: 10.1007/s00220-002-0705-4 |
[18] | Y. Lu, Hyperbolic Conservation Laws and the Compensated Compactness Method, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 2003, xii+241pp. |
[19] | Y. Lu, Existence of global entropy solutions of a nonstrictly hyperbolic system, Arch. Ration. Mech. Anal., 2005, 178(2), 287–299. doi: 10.1007/s00205-005-0379-0 |
[20] | M. Perepelitsa, A kinetic model for approximately isentropic solutions of the Euler equations, J. Differential Equations, 2016, 260(11), 8229–8241. doi: 10.1016/j.jde.2016.02.022 |
[21] | Q. Sun, Y. Lu and C. Klingenberg, Christian Global weak solutions for a nonlinear hyperbolic system, Acta Math. Sci., 2020, 40, 1185–1194. doi: 10.1007/s10473-020-0502-1 |
[22] | L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., Pitman, Boston, Mass. -London, 1979, 39, 136–212. |
[23] | A. Vasseur, Convergence of a semi-discrete kinetic scheme for the system of isentropic gas dynamics with $\gamma=3$, Indiana Univ. Math. J., 1999, 48(1), 347–364. |
[24] | G. Wang, J. Liu and L. Zhao, The Riemann problem for a one-dimensional nonlinear wave system with different gamma laws, Bound. Value Probl., 2017, 107, 16 pp. |
[25] | T. Yang, C. Zhu and H. Zhao, Compactness framework of Lp approximate solutions for scalar conservation laws, J. Math. Anal. Appl., 1998, 220(1), 164–186. doi: 10.1006/jmaa.1997.5845 |
[26] | Q. Zhang and Y. Hu, Self-similar solutions to the spherically-symmetric Euler equations with a two-constant equation of state, Indian J. Pure Appl. Math., 2019, 50(1), 35–49. doi: 10.1007/s13226-019-0305-z |