2023 Volume 13 Issue 6
Article Contents

A. Tripathy, S. Sahoo, S. Saha Ray, M. A. Abdou. COMPLEX NONLINEAR EVOLUTION EQUATIONS IN THE CONTEXT OF OPTICAL FIBERS: NEW WAVE-FORM ANALYSIS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3442-3460. doi: 10.11948/20230080
Citation: A. Tripathy, S. Sahoo, S. Saha Ray, M. A. Abdou. COMPLEX NONLINEAR EVOLUTION EQUATIONS IN THE CONTEXT OF OPTICAL FIBERS: NEW WAVE-FORM ANALYSIS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3442-3460. doi: 10.11948/20230080

COMPLEX NONLINEAR EVOLUTION EQUATIONS IN THE CONTEXT OF OPTICAL FIBERS: NEW WAVE-FORM ANALYSIS

  • In this study, the new waveforms of two nonlinear evolution models are investigated by an analytical method, namely the sigmoid function method. The considered nonlinear complex models for this are the full nonlinearity form of the Fokas-Lenells equation and the paraxial wave equation, which play an important role in the field of fiber optics by balancing the nonlinearity with the dispersion terms. Under different numeric values of the free terms, the obtained results represent varieties of wave shapes, specifically anti-kink, dark, bright, singular soliton, anti-peakon, kink, two-lump propagation during breather periodic form, single lump, two lump solutions, periodic peakon, and periodic wave solutions, which have not been obtained in the previous studies. These dynamical characteristics are discussed in detail with the help of a pictorial presentation of the derived solutions. These resultants of both the considered nonlinear equations can be useful in both fiber optics as well as in other optics-related fields.

    MSC: 34A34, 35C08, 47J35, 35C07, 78A60, 35G50
  • 加载中
  • [1] I. Ahmed, A. R. Seadawy and D. Lu, M-shaped rational solitons and their interaction with kink waves in the Fokas-lenells equation, Physica Scripta, 2019, 94(5), 055205. doi: 10.1088/1402-4896/ab0455

    CrossRef Google Scholar

    [2] M. A. Akbar, A. M. Wazwaz, F. Mahmud, et al., Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme, Results in Physics, 2022, 43, 106079. doi: 10.1016/j.rinp.2022.106079

    CrossRef Google Scholar

    [3] L. Akinyemi and E. Morazara, Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev–Petviashvili equation, Nonlinear Dynamics, 2023, 111(5), 4683–4707. doi: 10.1007/s11071-022-08087-x

    CrossRef Google Scholar

    [4] L. Akinyemi, M. Şenol and O. S. Iyiola, Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method, Mathematics and Computers in Simulation, 2021, 182, 211–233. doi: 10.1016/j.matcom.2020.10.017

    CrossRef Google Scholar

    [5] K. S. Al-Ghafri, E. V. Krishnan and A. Biswas, Chirped optical soliton perturbation of Fokas-Lenells equation with full nonlinearity, Advances in Difference Equations, 2020, 2020(1).

    Google Scholar

    [6] K. Ali, S. T. R. Rizvi, B. Nawaz and M. Younis, Optical solitons for paraxial wave equation in Kerr media, Modern Physics Letters B, 2019, 33(3), 1–9.

    Google Scholar

    [7] K. K. Ali, M. S. Osman and M. Abdel-Aty, New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method, Alexandria Engineering Journal, 2020, 59(3), 1191–1196. doi: 10.1016/j.aej.2020.01.037

    CrossRef Google Scholar

    [8] M. Arshad, D. Lu, M. U. Rehman, et al., Optical solitary wave and elliptic function solutions of Fokas-Lenells equation in presence of perturbation terms and its modulation instability, Physica Scripta, 2019, 94(10), 105202. doi: 10.1088/1402-4896/ab1791

    CrossRef Google Scholar

    [9] M. Arshad, A. R. Seadawy, D. Lu and M. S. Saleem, Elliptic function solutions, modulation instability and optical solitons analysis of the paraxial wave dynamical model with Kerr media, Optical and Quantum Electronics, 2021, 53(1), 1–20. doi: 10.1007/s11082-020-02634-9

    CrossRef Google Scholar

    [10] S. Arshed, A. Biswas, Q. Zhou, et al., Optical solitons pertutabation with Fokas-Lenells equation by exp(−φ(ξ))-expansion method, Optik, 2019, 179, 341–345. doi: 10.1016/j.ijleo.2018.10.136

    CrossRef Google Scholar

    [11] S. Arshed and N. Raza, Optical solitons perturbation of Fokas-Lenells equation with full nonlinearity and dual dispersion, Chinese Journal of Physics, 2020, 63, 314–324. doi: 10.1016/j.cjph.2019.12.004

    CrossRef Google Scholar

    [12] A. Bansal, A. H. Kara, A. Biswas, et al., Optical soliton perturbation, group invariants and conservation laws of perturbed Fokas-Lenells equation, Chaos, Solitons and Fractals, 2018, 114, 275–280. doi: 10.1016/j.chaos.2018.06.030

    CrossRef Google Scholar

    [13] A. Biswas, Y. Yildirim, E. Yaşar, et al., Optical soliton solutions to Fokas-lenells equation using some different methods, Optik, 2018, 173, 21–31. doi: 10.1016/j.ijleo.2018.07.098

    CrossRef Google Scholar

    [14] G. Dieu-donne, M. B. Hubert, A. R. Seadawy, et al., Chirped soliton solutions of Fokas–Lenells equation with perturbation terms and the effect of spatio-temporal dispersion in the modulational instability analysis, European Physical Journal Plus, 2020, 135(2).

    Google Scholar

    [15] G. Dieu-donne, C. G. L. Tiofack, A. R. Seadawy, et al., Propagation of W-shaped, M-shaped and other exotic optical solitons in the perturbed Fokas-Lenells equation, European Physical Journal Plus, 2020, 135(4).

    Google Scholar

    [16] Y. Ding, M. S. Osman and A. M. Wazwaz, Abundant complex wave solutions for the nonautonomous Fokas-Lenells equation in presence of perturbation terms, Optik, 2019, 181, 503–513. doi: 10.1016/j.ijleo.2018.12.064

    CrossRef Google Scholar

    [17] H. Durur and A. Yokuş, Discussions on diffraction and the dispersion for traveling wave solutions of the (2+1)-dimensional paraxial wave equation, Mathematical Sciences, 2022, 16(3), 269–279. doi: 10.1007/s40096-021-00419-z

    CrossRef Google Scholar

    [18] A. Ebaid, E. R. El-Zahar, A. F. Aljohani, et al., Exact solutions of the generalized nonlinear Fokas-Lennells equation, Results in Physics, 2019, 14, 102472. doi: 10.1016/j.rinp.2019.102472

    CrossRef Google Scholar

    [19] M. Ekici, Exact solitons in optical metamaterials with quadratic-cubic nonlinearity using two integration approaches, Optik, 2018, 156, 351–355. doi: 10.1016/j.ijleo.2017.11.056

    CrossRef Google Scholar

    [20] W. Gao, H. F. Ismael, H. Bulut and H. M. Baskonus, Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Physica Scripta, 2020, 95(3), 035207. doi: 10.1088/1402-4896/ab4a50

    CrossRef Google Scholar

    [21] W. Gao, H. F. Ismael, S. A. Mohammed, et al., Complex and real optical soliton properties of the paraxial non-linear Schrödinger equation in kerr media with M-fractional, Frontiers in Physics, 2019, 7, 1–8. doi: 10.3389/fphy.2019.00001

    CrossRef Google Scholar

    [22] H. F. Ismael, H. Bulut and H. M. Baskonus, Optical soliton solutions to the Fokas-Lenells equation via sine-Gordon expansion method and (m+(G’/G))-expansion method, Pramana-Journal of Physics, 2020, 94(1), 1–9. doi: 10.1007/s12043-019-1882-4

    CrossRef Google Scholar

    [23] H. F. Ismael, H. Bulut, C. Park and M. S. Osman, M-lump, N-soliton solutions, and the collision phenomena for the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Results in Physics, 2020, 19, 103329. doi: 10.1016/j.rinp.2020.103329

    CrossRef Google Scholar

    [24] Z. P. Izgi, F. N. Saglam, S. Sahoo, et al., A partial offloading algorithm based on intelligent sensing, International Journal of Modern Physics B, 2022, 36(17), 2250097. doi: 10.1142/S0217979222500977

    CrossRef Google Scholar

    [25] A. J. M. Jawad, A. Biswas, Q. Zhou, et al., Optical soliton perturbation of Fokas-Lenells equation with two integration schemes, Optik, 2018, 165, 111–116. doi: 10.1016/j.ijleo.2018.03.104

    CrossRef Google Scholar

    [26] Y. Khan, A novel type of soliton solutions for the Fokas-Lenells equation arising in the application of optical fibers, Modern Physics Letters B, 2020, 2150058, 1–10.

    Google Scholar

    [27] M. M. A. Khater, A. M. Alabdali, A. Mashat and S. A. Salama, Optical soliton wave solutions of the fractional complex paraxial wave dynamical model along with kerr media, Fractals, 2022, 30(5), 1–17.

    Google Scholar

    [28] N. A. Kudryashov, First integrals and general solution of the Fokas-Lenells equation, Optik, 2019, 195, 163135. doi: 10.1016/j.ijleo.2019.163135

    CrossRef Google Scholar

    [29] S. Kumar, M. Niwas, M. S. Osman and M. A. Abdou, Abundant different types of exact soliton solution to the (4+1)-dimensional Fokas and (2+1)-dimensional breaking soliton equations, Communications in Theoretical Physics, 2021, 73(10), 105007. doi: 10.1088/1572-9494/ac11ee

    CrossRef Google Scholar

    [30] M. Lakestani and J. Manafian, Novel dark, singular and combo optical solitons for Fokas-Lenells equation, Acta Physica Polonica A, 2019, 136(1), 214–224. doi: 10.12693/APhysPolA.136.214

    CrossRef Google Scholar

    [31] Z. Li, C. Huang and B. Wang, Phase portrait, bifurcation, chaotic pattern and optical soliton solutions of the Fokas-Lenells equation with cubic-quartic dispersion in optical fibers, Physics Letters A, 2023, 465, 128714. doi: 10.1016/j.physleta.2023.128714

    CrossRef Google Scholar

    [32] S. Malik, H. Almusawa, S. Kumar, et al., A (2+1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions, Results in Physics, 2021, 23, 104043. doi: 10.1016/j.rinp.2021.104043

    CrossRef Google Scholar

    [33] M. S. Osman and B. Ghanbari, New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach, Optik, 2018, 175, 328–333. doi: 10.1016/j.ijleo.2018.08.007

    CrossRef Google Scholar

    [34] R. U. Rahman, M. M. M. Qousini, A. Alshehri, et al., Evaluation of the performance of fractional evolution equations based on fractional operators and sensitivity assessment, Results in Physics, 2023, 49, 106537. doi: 10.1016/j.rinp.2023.106537

    CrossRef Google Scholar

    [35] T. Rasool, R. Hussain, M. A. Al Sharif, et al., A variety of optical soliton solutions for the M-truncated Paraxial wave equation using Sardar-subequation technique, Optical and Quantum Electronics, 2023, 55(5), 396. doi: 10.1007/s11082-023-04655-6

    CrossRef Google Scholar

    [36] S. S. Ray and S. Sahoo, New exact solutions of time fractional modified kawahara equations in modelling surface tension in shallow-water and capillary gravity water waves, The European Physical Journal Plus, 2017, 132(1), 1–11. doi: 10.1140/epjp/i2017-11280-8

    CrossRef Google Scholar

    [37] S. Sahoo and S. S. Ray, A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves, Math. Methods in the Appl. Sci., 2016, 40(1), 106–114.

    Google Scholar

    [38] S. Sahoo and S. Saha Ray, A novel approach for stochastic solutions of wick-type stochastic time-fractional Benjamin–Bona–Mahony equation for modeling long surface gravity waves of small amplitude, Stochastic Analysis and Applications, 2019, 37(3), 377–387. doi: 10.1080/07362994.2019.1569532

    CrossRef Google Scholar

    [39] M. Savescu, Q. Zhou, L. Moraru, et al., Singular optical solitons in birefringent nano-fibers, Optik, 2016, 127(20), 8995–9000. doi: 10.1016/j.ijleo.2016.06.089

    CrossRef Google Scholar

    [40] A. Souleymanou, A. Houwe, A. H. Kara, et al., Explicit exact solutions and conservation laws in a medium with competing weakly nonlocal nonlinearity and parabolic law nonlinearity, Optical and Quantum Electronics, 2023, 55(5), 464. doi: 10.1007/s11082-023-04694-z

    CrossRef Google Scholar

    [41] K. U. Tariq, H. Rezazadeh, M. Zubair et al., New Exact and Solitary Wave Solutions of Nonlinear Schamel–KdV Equation, International Journal of Applied and Computational Mathematics, 2022, 8(3), 114. doi: 10.1007/s40819-022-01315-3

    CrossRef Google Scholar

    [42] K. U. Tariq, H. Zainab, A. R. Seadawy, et al., On some novel optical wave solutions to the paraxial M-fractional nonlinear Schrödinger dynamical equation, Optical and Quantum Electronics, 2021, 53(5), 1–14.

    Google Scholar

    [43] A. Tripathy and S. Sahoo, A novel analytical method for solving (2+1)-dimensional extended Calogero-Bogoyavlenskii-Schiff equation in plasma physics, Journal of Ocean Engineering and Science, 2021, 6(4), 405–409. doi: 10.1016/j.joes.2021.04.003

    CrossRef Google Scholar

    [44] A. Tripathy and S. Sahoo, New optical behaviours of the time–fractional Radhakrishnan–Kundu–Lakshmanan model with Kerr law nonlinearity arise in optical fibers, Optical and Quantum Electronics, 2022, 54(4), 1–16.

    Google Scholar

    [45] K. J. Wang and G. D. Wang, Exact traveling wave solutions for the system of the ion sound and Langmuir waves by using three effective methods, Results in Physics, 2022, 35, 105390. doi: 10.1016/j.rinp.2022.105390

    CrossRef Google Scholar

Figures(13)

Article Metrics

Article views(1449) PDF downloads(469) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint