2023 Volume 13 Issue 6
Article Contents

Xueqiong Yi, Yuqian Zhou, Qian Liu. TRAVELING WAVES OF THE KDV-NKDV EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3461-3476. doi: 10.11948/20230100
Citation: Xueqiong Yi, Yuqian Zhou, Qian Liu. TRAVELING WAVES OF THE KDV-NKDV EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3461-3476. doi: 10.11948/20230100

TRAVELING WAVES OF THE KDV-NKDV EQUATION

  • In this paper, we use the dynamical system method to investigate the wave solutions of the KdV-nKdV equation. We prove Wazwaz’s proposal that the KdV-nKdV equation has continuous periodic wave solutions and give their exact expressions by elliptic integral theory. We confirm that the KdV-nKdV equation has no classical solitary wave solution although it can be regarded as a fusion of the KdV equation with classical solitary wave and the nKdV equation. In addition, we obtain some novel traveling wave solutions of it including trapezoidal wave, inverted ‘N’ wave, and blow-up wave solutions.

    MSC: 35C07, 34C23, 33E05
  • 加载中
  • [1] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer, 2013.

    Google Scholar

    [2] J. C. Chen and S. D. Zhu, Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg-de Vries equation, Applied Mathematics Letters, 2017, 73, 136–142. doi: 10.1016/j.aml.2017.05.002

    CrossRef Google Scholar

    [3] W. G. Cheng and T. Z. Xu, N-th Bäcklund transformation and soliton-cnoidal wave interaction solution to the combined KdV-negative-order KdV equation, Applied Mathematics Letters, 2019, 94, 21–29. doi: 10.1016/j.aml.2019.02.010

    CrossRef Google Scholar

    [4] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer Science & Business Media, 2012.

    Google Scholar

    [5] M. EKiCi and Ü. Metin, The double (G’/G, 1/G)-expansion method and its applications for some nonlinear partial differential equations, Journal of the Institute of Science and Technology, 2021, 11(1), 599–608.

    Google Scholar

    [6] B. L. Guo, X. F. Pang, Y. F. Wang and N. Liu, Solitons, Walter de Gruyter GmbH & Co KG, 2018.

    Google Scholar

    [7] T. Y. Han, Z. Li and X. Zhang, Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation, Physics Letters A, 2021, 395, 127217. doi: 10.1016/j.physleta.2021.127217

    CrossRef Google Scholar

    [8] H. C. Hu and F. Y. Liu, Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation, Chinese Physics B, 2020, 29(4), 040201. doi: 10.1088/1674-1056/ab6dca

    CrossRef Google Scholar

    [9] T. Kato, On the Korteweg-de Vries equation, Manuscripta mathematica, 1979, 28(1), 89–99.

    Google Scholar

    [10] B. Katzengruber, M. Krupa and P. Szmolyan, Bifurcation of traveling waves in extrinsic semiconductors, Physica D: Nonlinear Phenomena, 2000, 144(1–2), 1–19. doi: 10.1016/S0167-2789(00)00030-0

    CrossRef Google Scholar

    [11] D. J. Korteweg and G. De Vries, XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240), 422–443. doi: 10.1080/14786449508620739

    CrossRef Google Scholar

    [12] M. D. Kruskal, The birth of the soliton, Nonlinear evolution equations solvable by the spectral transform, 1978, 26, 1–8.

    Google Scholar

    [13] S. Kumar and D. Kumar, 1-Multisoliton and other invariant solutions of combined KdV-nKdV equation by using symmetry approach, 2018, arXiv: 1805.10983.

    Google Scholar

    [14] U. Kumar Samanta, A. Saha and P. Chatterjee, Bifurcations of nonlinear ion acoustic travelling waves in the frame of a Zakharov-Kuznetsov equation in magnetized plasma with a kappa distributed electron, Physics of Plasmas, 2013. DOI: 10.1063/1.4804347.

    CrossRef Google Scholar

    [15] J. B. Li and G. R. Chen, Bifurcations of traveling wave solutions in a microstructured solid model, International Journal of Bifurcation and Chaos, 2013, 23(01), 1350009. doi: 10.1142/S0218127413500090

    CrossRef Google Scholar

    [16] J. B. Li and G. R. Chen, Exact traveling wave solutions and their bifurcations for the Kudryashov-Sinelshchikov equation, International Journal of Bifurcation and Chaos, 2012, 22(05), 1250118. doi: 10.1142/S0218127412501180

    CrossRef Google Scholar

    [17] J. L. Liang, L. K. Tang, Y. H. Xia and Y. Zhang, Bifurcations and exact solutions for a class of MKdV equations with the conformable fractional derivative via dynamical system method, International Journal of Bifurcation and Chaos, 2020, 30(01), 2050004. doi: 10.1142/S0218127420500042

    CrossRef Google Scholar

    [18] P. J. Olver, Evolution equations possessing infinitely many symmetries, Journal of Mathematical Physics, 1977, 18(6), 1212–1215. doi: 10.1063/1.523393

    CrossRef Google Scholar

    [19] Z. J. Qiao, A general approach for getting the commutator representations of the hierarchies of nonlinear evolution equations, Physics Letters A, 1994, 195(5–6), 319–328. doi: 10.1016/0375-9601(94)90036-1

    CrossRef Google Scholar

    [20] Z. J. Qiao, Finite Dimensional Integrable System and Nonlinear Evolution Equations, Higer Eductation Press, Beijing, 2002.

    Google Scholar

    [21] Z. J. Qiao, Commutator representations of three isospectral equation hierarchies, Chin. J. Contemp. Math, 1993, 14, 41.

    Google Scholar

    [22] Z. J. Qiao, Generation of the hierarchies of solitons and generalized structure of the commutator representation, Acta. Appl. Math. Sinica, 1995, 18, 287–301.

    Google Scholar

    [23] Z. J. Qiao, Generalized structure of lax representations for nonlinear evolution equation, Applied Mathematics and Mechanics, 1997, 18(7), 671–677. doi: 10.1007/BF00127015

    CrossRef Google Scholar

    [24] Z. J. Qiao, Generalized Lax Algebra, γ-Matrix and Algebro-geometric Solution of Integrable Systems, Fudan University, Shanghai, 1997.

    Google Scholar

    [25] Z. J. Qiao, C. W. Cao and W. Strampp, Category of nonlinear evolution equations, algebraic structure, and r-matrix, Journal of Mathematical Physics, 2003, 44(2), 701–722. doi: 10.1063/1.1532769

    CrossRef Google Scholar

    [26] Z. J. Qiao and E. G. Fan, Negative-order Korteweg-de Vries equations, Physical Review E, 2012, 86(1), 016601. doi: 10.1103/PhysRevE.86.016601

    CrossRef Google Scholar

    [27] M. Rodriguez, J. Li and Z. J. Qiao, Negative Order KdV Equation with No Solitary Traveling Waves, Mathematics, 2021, 10(1), 48. doi: 10.3390/math10010048

    CrossRef Google Scholar

    [28] L. J. Shi and Z. S. Wen, Bifurcations and dynamics of traveling wave solutions to a Fujimoto-Watanabe equation, Communications in Theoretical Physics, 2018, 69(6), 631. doi: 10.1088/0253-6102/69/6/631

    CrossRef Google Scholar

    [29] J. M. Verosky, Negative powers of Olver recursion operators, Journal of mathematical physics, 1991, 32(7), 1733–1736. doi: 10.1063/1.529234

    CrossRef Google Scholar

    [30] A. M. Wazwaz, A new integrable equation that combines the KdV equation with the negative-order KdV equation, Mathematical Methods in the Applied Sciences, 2018, 41(1), 80–87. doi: 10.1002/mma.4595

    CrossRef Google Scholar

    [31] Z. S. Wen, Bifurcations and exact traveling wave solutions of the celebrated Green-Naghdi equations, International Journal of Bifurcation and Chaos, 2017, 27(07), 1750114. doi: 10.1142/S0218127417501140

    CrossRef Google Scholar

    [32] G. A. Xu, Y. Zhang and J. B. Li, Exact solitary wave and periodic-peakon solutions of the complex Ginzburg-Landau equation: Dynamical system approach, Mathematics and Computers in Simulation, 2022, 191, 157–167. doi: 10.1016/j.matcom.2021.08.007

    CrossRef Google Scholar

    [33] L. J. Zhang and C. M. Khalique, Exact solitary wave and periodic wave solutions of the Kaup-Kuperschmidt equation, J. Appl. Anal. Comput, 2015, 5(3), 485–495.

    Google Scholar

    [34] Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, American Mathematical Society, Providence, RI, USA, 1992.

    Google Scholar

    [35] Y. Q. Zhou, F. T. Fan and Q. Liu, Bounded and unbounded traveling wave solutions of the (3+1)-dimensional Jimbo-Miwa equation, Results in Physics, 2019, 12, 1149–1157. doi: 10.1016/j.rinp.2018.12.065

    CrossRef Google Scholar

    [36] Y. Q. Zhou and Q. Liu, Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation, Discrete & Continuous Dynamical Systems-B, 2016, 21(6), 2057.

    Google Scholar

    [37] W. J. Zhu and Y. H. Xia, Traveling Wave Solutions of a Generalized Burgers-αβ Equation, Qualitative Theory of Dynamical Systems, 2022, 21(1), 1–11. doi: 10.1007/s12346-021-00531-4

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(1547) PDF downloads(452) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint