Citation: | Anran Li, Chongqing Wei, Leiga Zhao. NONTRIVIAL GENERALIZED SOLUTION OF SCHRÖDINGER-POISSON SYSTEM IN $\mathbb{R}^3$ WITH ZERO MASS AND PERIODIC POTENTIAL[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3491-3503. doi: 10.11948/20230122 |
In this paper, we are concerned with a class of Schrödinger-Poisson systems in $\mathbb{R}^3$ with zero mass and periodic potential. Under some 3-superlinear assumptions on the nonlinearity, one nontrivial generalized solution is obtained by a combination of variational methods and perturbation method.
[1] |
C. O. Alves, M. A. S. Souto and M. Montenegro, Existence of solution for two classes of elliptic problems in $\mathbb{R}^{N}$ with zero mass, J. Differential Equations, 2012, 252(10), 5735–5750. doi: 10.1016/j.jde.2012.01.041
CrossRef $\mathbb{R}^{N}$ with zero mass" target="_blank">Google Scholar |
[2] | C. O. Alves, M. A. S. Souto and S. H. M. Soares, Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 2011, 377(2), 584–592. doi: 10.1016/j.jmaa.2010.11.031 |
[3] | A. Azzollini, P. d' Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. NonLinéaire, 2010, 27(2), 779–791. doi: 10.1016/j.anihpc.2009.11.012 |
[4] | A. Azzollini, L. Pisani and A. Pomponio, Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system, Proc. Roy. Soc. Edinburgh Sect. A: Math., 2011, 141(3), 449–463. doi: 10.1017/S0308210509001814 |
[5] | A. Azzollini and A. Pomponio, On a “zero mass” nonlinear Schrödinger equation, Adv. Nonlinear Stud., 2007, 7(4), 599–627. doi: 10.1515/ans-2007-0406 |
[6] | V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11(2), 283–293. doi: 10.12775/TMNA.1998.019 |
[7] | H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ Existence of a ground state, Arch. Rational Mech. Anal., 1983, 82, 313–345. doi: 10.1007/BF00250555 |
[8] | G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 2010, 248(3), 521–543. doi: 10.1016/j.jde.2009.06.017 |
[9] | T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 2004, 4(3), 307–322. doi: 10.1515/ans-2004-0305 |
[10] | T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A: Math., 2004, 134(5), 893–906. doi: 10.1017/S030821050000353X |
[11] | Y. Du, J. Su and C. Wang, On a quasilinear Schrödinger-Poisson system, J. Math. Anal. Appl., 2022, 505(1), 125446. doi: 10.1016/j.jmaa.2021.125446 |
[12] | Y. Du, J. Su and C. Wang, On the critical Schrödinger-Poisson system with $p$-Laplacian, Commun. Pur. Appl. Anal., 2022, 21(4), 1329–1342. doi: 10.3934/cpaa.2022020 |
[13] | G. M. Figueiredo and G. Siciliano, Existence and asymptotic behaviour of solutions for a quasi-linear Schrödinger-Poisson system with a critical nonlinearity, Z. Angew. Math. Phys., 2020, 71, 130. doi: 10.1007/s00033-020-01356-y |
[14] | I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger-Poisson-Slater problem, Commun. Contemp. Math., 2012, 14(1), 1250003. doi: 10.1142/S0219199712500034 |
[15] | L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 1997, 28(10), 1633–1659. doi: 10.1016/S0362-546X(96)00021-1 |
[16] | P. L. Lions, The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1984, 1(4), 223–283. doi: 10.1016/s0294-1449(16)30422-x |
[17] | S. Liu and S. Mosconi, On the Schrödinger-Poisson system with indefinite potential and 3-sublinear nonlinearity, J. Differential Equations, 2020, 269(1), 689–712. doi: 10.1016/j.jde.2019.12.023 |
[18] | Z. Liu and V. Moroz, Asymptotic profile of ground states for the Schrödinger-Poisson-Slater equation, Nonlinear Anal., 2022, 218, 112778. doi: 10.1016/j.na.2021.112778 |
[19] | C. Mercuri, V. Moroz and J. Van Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var., 2016, 55, 146. doi: 10.1007/s00526-016-1079-3 |
[20] | D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237(2), 655–674. doi: 10.1016/j.jfa.2006.04.005 |
[21] | D. Ruiz, On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases, Arch. Rational Mech. Anal., 2010, 198, 349–368. doi: 10.1007/s00205-010-0299-5 |
[22] | M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, Volume 24, Birkhäuser Boston, MA, 1996. |
[23] | M. Willem, Functional Analysis. Fundamentals and Applications, Birkhäuser New York, NY, 2013. |
[24] | T. Wu, Existence and symmetry breaking of ground state solutions for Schrödinger-Poisson systems, Calc. Var., 2021, 60, 59. doi: 10.1007/s00526-021-01953-3 |
[25] | L. Yang and Z. Liu, Infinitely many solutions for a zero mass Schrödinger-Poisson-Slater problem with critical growth, J. Appl. Anal. Comput., 2019, 9(5), 1706–1718. |
[26] | L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 2008, 346(1), 155–169. doi: 10.1016/j.jmaa.2008.04.053 |