Citation: | Lamya Almaghamsi, Ahmed Salem. FRACTIONAL LANGEVIN EQUATIONS WITH INFINITE-POINT BOUNDARY CONDITION: APPLICATION TO FRACTIONAL HARMONIC OSCILLATOR[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3504-3523. doi: 10.11948/20230124 |
The current study is concerned with the existence and uniqueness of the solution to the Langevin equation of two separate fractional orders. With the infinite-point boundary condition, the boundary value problem is studied. The Banach contraction principle, Leray-nonlinear Schauder's alternative, and Leray-Schauder degree theorems are all implemented. A numerical example is presented to demonstrate the accuracy of our results. In addition, as an application of our results, the mean and variance of a fractional harmonic oscillator with the undamped angular frequency of the oscillator under the effect of a random force described as Gaussian colored noise are calculated.
[1] | B. Acay and M. Inc, Electrical circuits RC, LC, and RLC under generalized type non-local singular fractional operator, Fractal Fract. 2021, 5, 9. DOI: 10.3390/fractalfract5010009. |
[2] | H. Baghani, Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, J. Fixed Point Theory Appl., 2018, 20, 63. doi: 10.1007/s11784-018-0540-7 |
[3] | A. A. Budini and M. O. Caceres, Functional characterization of generalized Langevin equations, J. Phys. A. Math. Gen., 2004, 37, 5959–5981. doi: 10.1088/0305-4470/37/23/002 |
[4] | R. F. Camargo, E. C. de Oliveira and J. Vaz, On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator, J. Math. Phys., 2009, 50, 123518. DOI: 10.1063/1.3269587. |
[5] | D. R. Castano, A note on the theorem of LeraySchauder, Topology and its Applications, 2007, 155, 130–134. doi: 10.1016/j.topol.2007.09.011 |
[6] | J. A. Conejero, J. Franceschi and E. Pic-Marco, Fractional vs. ordinary control systems: What does the fractional derivative provide, Mathematics, 2022, 10, 2719. DOI: 10.3390/math10152719. |
[7] | V. Feliu-Batlle, R. Rivas-Perez and F. Castillo-Garca, Simple fractional order controller combined with a Smith predictor for temperature control in a steel slab reheating furnace, Int. J. Control Autom. Syst., 2013, 11, 533–544. doi: 10.1007/s12555-012-0355-z |
[8] | D. Fuente, C. Lizama, J. F. Urchuegua and J. A. Conejero, Estimation of the light field inside photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions, J. Quant. Spectrosc. Radiat. Transf., 2018, 204, 23–26. doi: 10.1016/j.jqsrt.2017.08.012 |
[9] | A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003. |
[10] | D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, 1988. |
[11] | E. Ilhan and I. O. Kymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear Sci., 2020, 5, 171–188. doi: 10.2478/amns.2020.1.00016 |
[12] | A. A. Kilbas, M. Saigo and R. K. Saxena, Generalized Mittag-leffler function and generalized fractional calculus operators, Integral Transforms and Special Functions, 2004, 15(1), 31–49. DOI: 10.1080/10652460310001600717. |
[13] | A. A. Kilbas, H. M Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006. |
[14] |
R. Kubo, The fluctuation-dissipation theorem, Reports on Progress in Physics, 1966, 29(1), 255–284. |
[15] | M. Lewandowski and M. Orzyowski, Fractional-order models: The case study of the supercapacitor capacitance measurement, Bull. Pol. Acad. Sci.-Tech., 2017, 65, 449–457. |
[16] | B. Li, S. Sun and Y. Sun, Existence of solutions for fractional Langevin equation with infinite-point boundary conditions, J. Appl. Math. Comput., 2017, 53, 683–692. doi: 10.1007/s12190-016-0988-9 |
[17] | F. Mainardi, A. Mura and F. Tampieri, Brownian Motion and Anomalous Diffusion Revisited via a Fractional Langevin Equation, 2010. |
[18] | F. Mainradi and P. Pironi, The fractional Langevin equation: Brownian motion revisted, Extracta Math., 1996, 10, 140–54. |
[19] | J. Mawhin, Leary-Schauder degree: A half century of extensions and applications, Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center, 1999, 14, 195–228. doi: 10.12775/TMNA.1999.029 |
[20] | I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, New Tork, 1999. |
[21] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama. Math. J., 1971, 19, 7–15. |
[22] | A. Salem, Existence results of solutions for ant-periodic fractional Langevin equation, Journal of Applied Analysis & Computation, 2020, 10(6), 2557–2574. DOI: 10.11948/20190419. |
[23] | A. Salem and S. Abdullah, Non-instantaneous impulsive bvps involving generalized Liouville-Caputo derivative, Mathematics, 2022, 10, 291. DOI: 10.3390/math10030291. |
[24] | A. Salem and A. Al-Dosari, Hybrid differential inclusion involving two multi-valued operators with nonlocal multi-valued integral condition, Fractal Fract., 2022, 6, 109. DOI: 10.3390/fractalfract6020109. |
[25] | A. Salem and B. Alghamdi, Multi-strip and multi-point boundary conditions for fractional Langevin equation, Fractal and Fractional, 2020, 4(2), 18. doi: 10.3390/fractalfract4020018 |
[26] | A. Salem and B. Alghamdi, Multi-point and anti-periodic conditions for generalized Langevin equation with two fractional orders, Fractal and Fractional, 2019, 3(4), 1–14. DOI: 10.3390/fractalfract3040051. |
[27] | A. Salem, K. N. Alharbi and H. M. Alshehri, Fractional evolution equations with infinite time delay in abstract phase space, Mathematics, 2022, 10, 1332. DOI: 10.3390/math10081332. |
[28] | A. Salem and L. Almaghamsi, Existence solution for coupled system of Langevin fractional differential equations of Caputo type with Riemann-Stieltjes integral boundary conditions, Symmetry, 2021, 13, 2123. DOI: 10.3390/sym13112123. |
[29] | A. Salem, F. Alzahrani and L. Almaghamsi, Fractional Langevin equation with nonlocal integral boundary condition, Mathematics, 2019, 7(5), 1–10. DOI: 10.3390/math7050402. |
[30] | A. Salem and R. Babusail, Finite-time stability in nonhomogeneous delay differential equations of fractional hilfer type, Mathematics, 2022, 10, 1520. DOI: 10.3390/math10091520. |
[31] | A. Salem and N. Mshary, Coupled fixed point theorem for the generalized Langevin equation with four-point and strip conditions, Advances in Mathematical Physics, 2022, 2022, Article ID 1724221. DOI: 10.1155/2022/1724221. |
[32] | A. Salem and N. Mshary, On the existence and uniqueness of solution to fractional-order Langevin equation, Advances in Mathematical Physics, 2020, 2020, 8890575. DOI: 10.1155/2020/8890575. |
[33] | H.-G. Sun, Y.-Q. Chen and W. Chen, Random order fractional differential equation models, Signal Process, 2011, 91, 525–530. doi: 10.1016/j.sigpro.2010.01.027 |
[34] | D. Xue, C. Zhao and Y. Chen, Fractional order PID control of a DC-motor with elastic shaft: A case study, In Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 2006, 1416, 6. |
[35] | C. Zhai and P. Li, Nonnegative solutions of initial value problems for Langevin equations involving two fractional orders, Mediterr. J. Math., 2018, 5, 1–11. |
[36] | C. Zhai, P. Li and H. Li, Single upper-solution or lower-solution method for Langevin equations with two fractional orders, Advances in Difference Equations, 2018, 360, 1–10. |
[37] | Z. Zhou and Y. Qiao, Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions, Boundary Value Problems, 2018, 152. DOI: 10.1186/s13661-018-1070-3. |
The expected value when
The variance when
The expected value when
The variance when