Citation: | Yanyan Liu, Leiga Zhao. REMARKS ON NORMALIZED GROUND STATES OF SCHRÖDINGER EQUATION WITH AT LEAST MASS CRITICAL NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3524-3534. doi: 10.11948/20230139 |
We are concerned with the nonlinear Schrödinger equation
$ \begin{equation*}-\Delta u+\lambda u=g(u)\text{ in }\mathbb{R}^{N}\text{, }\lambda \in\mathbb{R}, \end{equation*} $
with prescribed $L^{2}$-norm $\int_{\mathbb{R}^{N}}u^{2}dx=\rho ^{2}$. Under general assumptions about the nonlinearity which allows at least mass critical growth, we prove the existence of a ground state solution to the problem via a clear constrained minimization method.
[1] | T. Bartsch, Y. Liu and Z. Liu, Normalized solutions for a class of nonlinear Choquard equations, SN Partial Differ. Equ. Appl., 2020, 1, 34. doi: 10.1007/s42985-020-00036-w |
[2] | T. Bartsch and N. Soave, A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 2017, 272, 4998–5037. doi: 10.1016/j.jfa.2017.01.025 |
[3] | T. Bartsch and N. Soave, Corrigendum: Correction to: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 2018, 275, 516–521. doi: 10.1016/j.jfa.2018.02.007 |
[4] | H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 1983, 82, 313–345. doi: 10.1007/BF00250555 |
[5] | B. Bieganowski and J. Mederski, Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth, J. Funct. Anal., 2021, 280(11), 108989. doi: 10.1016/j.jfa.2021.108989 |
[6] | F. H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res., 1976, 1, 165–174. doi: 10.1287/moor.1.2.165 |
[7] | M. Du, L. Tian, J. Wang and F. Zhang, Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, P. Roy. Soc. Edinb. A., 2019, 149, 617–653. doi: 10.1017/prm.2018.41 |
[8] | X. Luo, Stability and and multiplicity of standing waves for the inhomogeneous NLS equation with a harmonic potential, Nonlinear Anal. Real World Appl., 2019, 45, 688–703. doi: 10.1016/j.nonrwa.2018.07.031 |
[9] | Z. Ma and X. Chang, Normalized ground states of nonlinear biharmonic Schrödinger equations with Sobolev critical growth and combined nonlinearities, Appl. Math. Lett., 2023, 135, 108388. doi: 10.1016/j.aml.2022.108388 |
[10] |
J. Mederski and J. Schino, Least energy solutions to a cooperative system of Schrödinger equations with prescribed $L^{2}$ -bounds: at least $L^{2}$-critical growth, Calc. Var. Partial Differ. Equ., 2022, 61, 10. doi: 10.1007/s00526-021-02116-0
CrossRef $L^{2}$ -bounds: at least |
[11] | N. Ikoma, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud., 2014, 14, 115–136. doi: 10.1515/ans-2014-0104 |
[12] | L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 1997, 28, 1633–1659. doi: 10.1016/S0362-546X(96)00021-1 |
[13] | L. Jeanjean and S. Lu, A mass supercritical problem revisited, Calc. Var. Partial Differ. Equ., 2020, 59, 44. doi: 10.1007/s00526-020-1699-5 |
[14] | H. Li, Z. Yang and W. Zou, Normalized solutions for nonlinear Schrödinger equations, Sci. Sin. Math., 2020, 50, 1023. doi: 10.1360/SSM-2020-0120 |
[15] | N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ., 2020, 269, 6941–6987. doi: 10.1016/j.jde.2020.05.016 |
[16] | C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. Lond. Math. Soc., 1982, 45, 169–192. |
[17] | J. Wei and Y. Wu, Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, J. Funct. Anal., 2022, 283(6), 109574. doi: 10.1016/j.jfa.2022.109574 |
[18] | Z. Yang, S. Qi and W. Zou, Normalized solutions of nonlinear Schrödinger equations with potentials and non-autonomous Nonlinearities, J. Geom. Anal., 2022, 32, 159. doi: 10.1007/s12220-022-00897-0 |