Citation: | Xuan Wang, Haiyan Yuan, Xiaoling Han, Chenghua Gao. ATTRACTORS FOR THE NONCLASSICAL DIFFUSION EQUATION WITH TIME-DEPENDENT MEMORY KERNEL AND CRITICAL NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2474-2507. doi: 10.11948/20230130 |
In this paper, we consider the long-time dynamics of solutions for the nonclassical diffusion equation with time-dependent memory kernel when nonlinear term adheres to critical growth, where the time-dependent memory kernel is used to describe the aging process of viscoelastic conductive medium. Under the new theory framework, we first establish the well-posedness and regularity of the solutions, and then we prove the existence and regularity of the time-dependent global attractors in the time-dependent space $H_0^1(\Omega)\times L_{\mu_t}^2(\mathbb R^+; H_0^1(\Omega))$ by use of the delicate integral estimation method and decomposition technique.
[1] | E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 1980, 37(3), 265-296. |
[2] | J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equations with critical exponents, Comm. Partial Differential Equations, 1992, 17, 841-866. doi: 10.1080/03605309208820866 |
[3] | S. Borini and V. Pata, Uniform attractors for a strongly damped wave equations with linear memory, Asymptotic Anal., 1999, 20(3), 263-277. |
[4] | P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 1968, 19(4), 614-627. doi: 10.1007/BF01594969 |
[5] | V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, Rhode Island, 2002. |
[6] | M. Conti, V. Danese, C. Giorgi and V. Pata, A model of viscoelasticity with time-dependent memory kernels, American Journal of Mathematics, 2018, 140(2), 349-389. doi: 10.1353/ajm.2018.0008 |
[7] | M. Conti, V. Danese and V. Pata, Viscoelasticity with time-dependent memory kernels, Part Ⅱ: Asymptotic behavior of solutions, American Journal of Mathematics, 2018, 140(6), 1687-1721. doi: 10.1353/ajm.2018.0049 |
[8] | M. Conti, F. Dell'Oro and V. Pata, Some unexplored questions arising in linear viscoelasticity, J. Funct. Anal., 2022. DOI: 10.1016/2022/j.jfa.2022.109422. |
[9] | M. Conti and V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Analysis RWA, 2014, 19, 1-10. |
[10] | M. Conti, V. Pata, M. Pellicer and R. Quintaniliia, A new approach to MGT-thermoviscoelasticity, Discrete Contin. Dyn. Syst., 2021, 41(10), 4645-4666. doi: 10.3934/dcds.2021052 |
[11] | M. Conti, V. Pata, M. Pellicer and R. Quintaniliia, On the analyticity of the MGT-visoelastic plate with heat conduction, J. Diff. Eqs., 2020, 269, 7862-7880. doi: 10.1016/j.jde.2020.05.043 |
[12] | M. Conti, V. Pata and R. Quintaniliia, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptotic Anal., 2019. DOI: 10.3233/ASY-191576. |
[13] | M. Conti, V. Pata and R. Temam, Attractors for the processes on time-dependent spaces, applications to wave equations, J. Diff. Eqs., 2013, 255(6), 1254-1277. doi: 10.1016/j.jde.2013.05.013 |
[14] | C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 1970, 37(4), 297-308. doi: 10.1007/BF00251609 |
[15] | T. Ding and Y. F. Liu, Time-dependent global attractor for the nonclassical diffusion equations, Appl. Anal., 2015, 94(7), 1439-1449. doi: 10.1080/00036811.2014.933475 |
[16] | C. Gatti, A. Miranville, V. Pata and S. V. Zelik, Attractors for semi-linear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 2008, 38(4), 1117-1138. |
[17] | M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory, Progress in Nonlinear Differential Equations and Their Applications, 2002, 50, 155-178. |
[18] | Y. N. Li and Z. J. Yang, Exponential attractor for the viscoelastic wave model with time-dependent memory kernels, J. Dyn. Diff. Equat., 2021. DOI: 10.1007/s10884-021-10035-z. |
[19] | J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin Heidelberg, 1972. |
[20] | F. J. Meng, J. Wu and C. X. Zhao, Time-dependent global attractor for extensible Berger equation, J. Math. Anal. Appl., 2019, 469(2), 1045-1069. doi: 10.1016/j.jmaa.2018.09.050 |
[21] | V. Pata and M. Squassina, On the strongly damped wave equation, Commun. Math. Phys., 2005, 253, 511-533. doi: 10.1007/s00220-004-1233-1 |
[22] | V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 2001, 11(2), 505-529. |
[23] | R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 2019, 24, 4020-4031. doi: 10.1177/1081286519862007 |
[24] | J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., 1987, 146(1), 65-96. |
[25] | C. Y. Sun, S. Y. Wang and C. K. Zhong, Global attractors for a nonclassical diffusion equation, Acta Mathematica Sinica, 2007, 23(7), 1271-1280. doi: 10.1007/s10114-005-0909-6 |
[26] | C. Y. Sun and M. H. Yang, Dynamics of the nonclassical diffusion equation, Asymptotic Anal., 2008, 59(1), 51-81. |
[27] | Y. Sun and Z. J. Yang, Longtime dynamics for a nonlinear viscoelastic equation with time-dependent memory kernel, Nonlinear Analysis RWA, 2022, 64, 103432. DOI: 10.1016/j.nonrwa.2021.103432. |
[28] | S. Y. Wang, D. S. Li and C. K. Zhong, On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 2006, 317(2), 565-582. doi: 10.1016/j.jmaa.2005.06.094 |
[29] | X. Wang, L. Yang and C. K. Zhong, Attractors for the nonclassical diffusion equations with fading memory, J. Math. Anal. Appl., 2010, 362, 327-337. doi: 10.1016/j.jmaa.2009.09.029 |
[30] | X. Wang and C. K. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory, Nonlinear Analysis, 2009, 71, 5733-5746. doi: 10.1016/j.na.2009.05.001 |
[31] | Y. W. Wang and L. Z. Wang, Trajectory attractors for nonclassical diffusion equations with fading memory, Acta Mathematica Scientia, 2013, 33(3), 721-737. doi: 10.1016/S0252-9602(13)60033-8 |
[32] | H. Q. Wu and Z. Y. Zhang, Asymptotic regularity for the nonclassical diffusion equation with lower regular forcing term, Dynamical Systems, 2011, 26(4), 391-400. doi: 10.1080/14689367.2011.562185 |
[33] | Y. L. Xiao, Attractors for a nonclassical diffusion equation, Acta Mathematicae Applicatae Sinica, 2002, 18, 273-276. doi: 10.1007/s102550200026 |
[34] | S. V. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Comm. Pure Appl. Anal., 2004, 3(4), 921-934. doi: 10.3934/cpaa.2004.3.921 |