2025 Volume 15 Issue 5
Article Contents

Xuan Wang, Haiyan Yuan, Xiaoling Han, Chenghua Gao. ATTRACTORS FOR THE NONCLASSICAL DIFFUSION EQUATION WITH TIME-DEPENDENT MEMORY KERNEL AND CRITICAL NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2474-2507. doi: 10.11948/20230130
Citation: Xuan Wang, Haiyan Yuan, Xiaoling Han, Chenghua Gao. ATTRACTORS FOR THE NONCLASSICAL DIFFUSION EQUATION WITH TIME-DEPENDENT MEMORY KERNEL AND CRITICAL NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2474-2507. doi: 10.11948/20230130

ATTRACTORS FOR THE NONCLASSICAL DIFFUSION EQUATION WITH TIME-DEPENDENT MEMORY KERNEL AND CRITICAL NONLINEARITY

  • In this paper, we consider the long-time dynamics of solutions for the nonclassical diffusion equation with time-dependent memory kernel when nonlinear term adheres to critical growth, where the time-dependent memory kernel is used to describe the aging process of viscoelastic conductive medium. Under the new theory framework, we first establish the well-posedness and regularity of the solutions, and then we prove the existence and regularity of the time-dependent global attractors in the time-dependent space $H_0^1(\Omega)\times L_{\mu_t}^2(\mathbb R^+; H_0^1(\Omega))$ by use of the delicate integral estimation method and decomposition technique.

    MSC: 35B40, 35B41
  • 加载中
  • [1] E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 1980, 37(3), 265-296.

    Google Scholar

    [2] J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equations with critical exponents, Comm. Partial Differential Equations, 1992, 17, 841-866. doi: 10.1080/03605309208820866

    CrossRef Google Scholar

    [3] S. Borini and V. Pata, Uniform attractors for a strongly damped wave equations with linear memory, Asymptotic Anal., 1999, 20(3), 263-277.

    Google Scholar

    [4] P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 1968, 19(4), 614-627. doi: 10.1007/BF01594969

    CrossRef Google Scholar

    [5] V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, Rhode Island, 2002.

    Google Scholar

    [6] M. Conti, V. Danese, C. Giorgi and V. Pata, A model of viscoelasticity with time-dependent memory kernels, American Journal of Mathematics, 2018, 140(2), 349-389. doi: 10.1353/ajm.2018.0008

    CrossRef Google Scholar

    [7] M. Conti, V. Danese and V. Pata, Viscoelasticity with time-dependent memory kernels, Part Ⅱ: Asymptotic behavior of solutions, American Journal of Mathematics, 2018, 140(6), 1687-1721. doi: 10.1353/ajm.2018.0049

    CrossRef Google Scholar

    [8] M. Conti, F. Dell'Oro and V. Pata, Some unexplored questions arising in linear viscoelasticity, J. Funct. Anal., 2022. DOI: 10.1016/2022/j.jfa.2022.109422.

    CrossRef Google Scholar

    [9] M. Conti and V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Analysis RWA, 2014, 19, 1-10.

    Google Scholar

    [10] M. Conti, V. Pata, M. Pellicer and R. Quintaniliia, A new approach to MGT-thermoviscoelasticity, Discrete Contin. Dyn. Syst., 2021, 41(10), 4645-4666. doi: 10.3934/dcds.2021052

    CrossRef Google Scholar

    [11] M. Conti, V. Pata, M. Pellicer and R. Quintaniliia, On the analyticity of the MGT-visoelastic plate with heat conduction, J. Diff. Eqs., 2020, 269, 7862-7880. doi: 10.1016/j.jde.2020.05.043

    CrossRef Google Scholar

    [12] M. Conti, V. Pata and R. Quintaniliia, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptotic Anal., 2019. DOI: 10.3233/ASY-191576.

    CrossRef Google Scholar

    [13] M. Conti, V. Pata and R. Temam, Attractors for the processes on time-dependent spaces, applications to wave equations, J. Diff. Eqs., 2013, 255(6), 1254-1277. doi: 10.1016/j.jde.2013.05.013

    CrossRef Google Scholar

    [14] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 1970, 37(4), 297-308. doi: 10.1007/BF00251609

    CrossRef Google Scholar

    [15] T. Ding and Y. F. Liu, Time-dependent global attractor for the nonclassical diffusion equations, Appl. Anal., 2015, 94(7), 1439-1449. doi: 10.1080/00036811.2014.933475

    CrossRef Google Scholar

    [16] C. Gatti, A. Miranville, V. Pata and S. V. Zelik, Attractors for semi-linear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 2008, 38(4), 1117-1138.

    Google Scholar

    [17] M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory, Progress in Nonlinear Differential Equations and Their Applications, 2002, 50, 155-178.

    Google Scholar

    [18] Y. N. Li and Z. J. Yang, Exponential attractor for the viscoelastic wave model with time-dependent memory kernels, J. Dyn. Diff. Equat., 2021. DOI: 10.1007/s10884-021-10035-z.

    CrossRef Google Scholar

    [19] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin Heidelberg, 1972.

    Google Scholar

    [20] F. J. Meng, J. Wu and C. X. Zhao, Time-dependent global attractor for extensible Berger equation, J. Math. Anal. Appl., 2019, 469(2), 1045-1069. doi: 10.1016/j.jmaa.2018.09.050

    CrossRef Google Scholar

    [21] V. Pata and M. Squassina, On the strongly damped wave equation, Commun. Math. Phys., 2005, 253, 511-533. doi: 10.1007/s00220-004-1233-1

    CrossRef Google Scholar

    [22] V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 2001, 11(2), 505-529.

    Google Scholar

    [23] R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 2019, 24, 4020-4031. doi: 10.1177/1081286519862007

    CrossRef Google Scholar

    [24] J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., 1987, 146(1), 65-96.

    Google Scholar

    [25] C. Y. Sun, S. Y. Wang and C. K. Zhong, Global attractors for a nonclassical diffusion equation, Acta Mathematica Sinica, 2007, 23(7), 1271-1280. doi: 10.1007/s10114-005-0909-6

    CrossRef Google Scholar

    [26] C. Y. Sun and M. H. Yang, Dynamics of the nonclassical diffusion equation, Asymptotic Anal., 2008, 59(1), 51-81.

    Google Scholar

    [27] Y. Sun and Z. J. Yang, Longtime dynamics for a nonlinear viscoelastic equation with time-dependent memory kernel, Nonlinear Analysis RWA, 2022, 64, 103432. DOI: 10.1016/j.nonrwa.2021.103432.

    CrossRef Google Scholar

    [28] S. Y. Wang, D. S. Li and C. K. Zhong, On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 2006, 317(2), 565-582. doi: 10.1016/j.jmaa.2005.06.094

    CrossRef Google Scholar

    [29] X. Wang, L. Yang and C. K. Zhong, Attractors for the nonclassical diffusion equations with fading memory, J. Math. Anal. Appl., 2010, 362, 327-337. doi: 10.1016/j.jmaa.2009.09.029

    CrossRef Google Scholar

    [30] X. Wang and C. K. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory, Nonlinear Analysis, 2009, 71, 5733-5746. doi: 10.1016/j.na.2009.05.001

    CrossRef Google Scholar

    [31] Y. W. Wang and L. Z. Wang, Trajectory attractors for nonclassical diffusion equations with fading memory, Acta Mathematica Scientia, 2013, 33(3), 721-737. doi: 10.1016/S0252-9602(13)60033-8

    CrossRef Google Scholar

    [32] H. Q. Wu and Z. Y. Zhang, Asymptotic regularity for the nonclassical diffusion equation with lower regular forcing term, Dynamical Systems, 2011, 26(4), 391-400. doi: 10.1080/14689367.2011.562185

    CrossRef Google Scholar

    [33] Y. L. Xiao, Attractors for a nonclassical diffusion equation, Acta Mathematicae Applicatae Sinica, 2002, 18, 273-276. doi: 10.1007/s102550200026

    CrossRef Google Scholar

    [34] S. V. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Comm. Pure Appl. Anal., 2004, 3(4), 921-934. doi: 10.3934/cpaa.2004.3.921

    CrossRef Google Scholar

Article Metrics

Article views(203) PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint