2025 Volume 15 Issue 5
Article Contents

Fuchen Zhang, Song Chen, Xiusu Chen, Jinde Cao, Fei Xu. SYNCHRONIZATION OF A NOVEL COMPLEX SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2508-2527. doi: 10.11948/20240020
Citation: Fuchen Zhang, Song Chen, Xiusu Chen, Jinde Cao, Fei Xu. SYNCHRONIZATION OF A NOVEL COMPLEX SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2508-2527. doi: 10.11948/20240020

SYNCHRONIZATION OF A NOVEL COMPLEX SYSTEM

  • In this paper, we introduce a new hyperchaotic system which is a four-dimensional system of nonlinear differential equations. This system exhibits very rich chaotic dynamical behaviors. The dynamical characteristics of this system are analysed theoretically and numerically, including the dissipation, the quilibrium points and their stability, Lyapunov exponents, the Lyapunov dimension of the attractors, the global exponential attractive set. In order to achieve synchronization fast, global exponential synchronization is adopted. Suitable linear and nonlinear controllers have been designed to achieve global exponential synchronization between two identical chaotic systems by using the Lyapunov stability theory and Dini derivative. The innovation of this paper is that firstly we get the globally exponential attractive set of this system. Secondly, the result of globally exponential attractive set of the chaotic system is applied to chaos synchronization. Thirdly, we can get the precise lower bound of the coefficient of linear feedback controller ${k_1}, {k_2}, {k_3}$ and ${k_4}$. Finally, chaos synchronization is studied numerically. Numerical simulations are in excellent agreement with the theoretical study.

    MSC: 34A08, 34D06, 34H10, 34H15
  • 加载中
  • [1] M. P. Asir, K. Thamilmaran, A. Prasad, U. Feudel, N. V. Kuznetsov and M. D. Shrimali, Hidden strange nonchaotic dynamics in a non-autonomous model, Chaos Soliton. Fract., 2023, 168, 113101. doi: 10.1016/j.chaos.2023.113101

    CrossRef Google Scholar

    [2] G. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurc. Chaos Appl. Sci. Eng., 1999, 9, 1465-1466. doi: 10.1142/S0218127499001024

    CrossRef Google Scholar

    [3] L. Chua, M. Komuro and T. Matsumoto, The double scroll family, IEEE Trans. Circuits Syst., 1986, 33(11), 1072-1118. doi: 10.1109/TCS.1986.1085869

    CrossRef Google Scholar

    [4] Z. Y. Dong, X. Wang, X. Zhang, M. Hu and T. N. Dinh, Global exponential synchronization of discrete-time high-order switched neural networks and its application to multi-channel audio encryption, Nonlinear Anal. -Hybri., 2023, 47, 101291. doi: 10.1016/j.nahs.2022.101291

    CrossRef Google Scholar

    [5] P. Frederickson, J. Kaplan, E. Yorke and J. Yorke, The Lyapunov dimension of strange attractors, J. Differ. Equ., 1983, 49(2), 185-207. doi: 10.1016/0022-0396(83)90011-6

    CrossRef Google Scholar

    [6] D. Khattar, N. Agrawal and G. Singh, Chaos synchronization of a new chaotic system having exponential term via adaptive and sliding mode control, Differ. Equ. Dyn. Syst., 2023, 1-19. https//doi. org/10.1007/s12591-023-00635-0.

    Google Scholar

    [7] D. H. Kobe, Helmholtz's theorem revisited, Am J Phys. 1986, 54(6), 552-554. doi: 10.1119/1.14562

    CrossRef Google Scholar

    [8] N. Kuznetsov, T. Mokaev, O. Kuznetsova and E. V. Kudryashova, The Lorenz system: Hidden bounary of practical stability and the Lyapunov dimension, Nonlinear Dyn., 2020, 102, 713-732. doi: 10.1007/s11071-020-05856-4

    CrossRef Google Scholar

    [9] N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich and L. Chua, Hidden attractors in Chua circuit: Mathematical theory meets physical experiments, Nonlinear Dyn., 2023, 111(6), 5859-5887. doi: 10.1007/s11071-022-08078-y

    CrossRef Google Scholar

    [10] G. A. Leonov, Lyapunov functions in the attractors dimension theory, J. Appl. Math. Mech., 2012, 76(2), 129-141. doi: 10.1016/j.jappmathmech.2012.05.002

    CrossRef Google Scholar

    [11] G. A. Leonov and V. A. Boichenko, Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors, Acta Appl. Math., 1992, 26(1), 1-60. doi: 10.1007/BF00046607

    CrossRef Google Scholar

    [12] G. A. Leonov and N. V. Kuznetsov, Time-varying linearization and the Perron effects, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2007, 17(4), 1079-1107. doi: 10.1142/S0218127407017732

    CrossRef Google Scholar

    [13] T. Y. Li and J. A. Yorke, Period three implies chaos, Am. Math. Mon., 1975, 82, 985-992. doi: 10.1080/00029890.1975.11994008

    CrossRef Google Scholar

    [14] M. Liu, J. Liu, J. Liang, Y. Sun and Y. Shu, Observer-based secure synchronization control of directed complex-valued dynamical networks under link attacks, Nonlinear Dyn., 2024, 112, 12303-12318. doi: 10.1007/s11071-024-09695-5

    CrossRef Google Scholar

    [15] R. Liu, H. Liu and M. Zhao, Reveal the correlation between randomness and Lyapunov exponent of n-dimensional non-degenerate hyper chaotic map, Integration, 2023, 93, 102071. doi: 10.1016/j.vlsi.2023.102071

    CrossRef Google Scholar

    [16] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 1963, 20, 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    CrossRef Google Scholar

    [17] J. Lu and G. Chen, A new chaotic attractor coined, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2002, 12(3), 659-661. doi: 10.1142/S0218127402004620

    CrossRef Google Scholar

    [18] J. Lu, G. Chen, D. Cheng and S. Celikovsky, Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcat. Chaos., 2002, 12(12), 2917-2926. doi: 10.1142/S021812740200631X

    CrossRef Google Scholar

    [19] G. M. Mahmoud, M. A. Al-Kashif and A. A. Farghaly, Chaotic and hyperchaotic attractors of a complex nonlinear system, J. Phys. A: Math. Theor., 2008, 41(5), 055104. doi: 10.1088/1751-8113/41/5/055104

    CrossRef Google Scholar

    [20] Z. T. Njitacke, C. N. Takembo, J. Awrejcewicz, H. P. E. Fouda and J. Kengne, Hamilton energy, complex dynamical analysis and information patterns of a new memristive FitzHugh-Nagumo neural network, Chaos Soliton. Fract., 2022, 160, 112211. doi: 10.1016/j.chaos.2022.112211

    CrossRef Google Scholar

    [21] E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 1990, 64(11), 1196-1199. doi: 10.1103/PhysRevLett.64.1196

    CrossRef Google Scholar

    [22] J. Park, H. Lee and J. Baik, Periodic and chaotic dynamics of the Ehrhard-Muller system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2016, 26(6), 1630015. doi: 10.1142/S0218127416300159

    CrossRef Google Scholar

    [23] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 1990, 64(8), 821-824. doi: 10.1103/PhysRevLett.64.821

    CrossRef Google Scholar

    [24] H. Poincaré, Sur le probleme des trois corps et les equations de la dynamique, Acta Math., 1890, 13, 1-270. doi: 10.1007/BF02392514

    CrossRef Google Scholar

    [25] O. E. Rossler, An equation for continuous chaos, Phys. Lett. A, 1976, 57, 397-398. doi: 10.1016/0375-9601(76)90101-8

    CrossRef Google Scholar

    [26] C. Sarasola, F. J. Torrealdea, A. Anjou, A. Moujahid and M. Grana, Energy balance in feedback synchronization of chaotic systems, Phys. Rev. E, 2004, 69(1), 011606. doi: 10.1103/PhysRevE.69.011606

    CrossRef Google Scholar

    [27] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Applied Mathematical Science, vol. 41, Springer, New York, 1982.

    Google Scholar

    [28] L. Stenflo, Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Phys. Scr., 1996, 3, 83-84.

    Google Scholar

    [29] J. C. Vallejo and M. A. Sanjuan, Predictability of Chaotic Dynamics, A Finite-Time Lyapunov Exponents Approach, Springer, Cham, 2019.

    Google Scholar

    [30] A. Wagemakers, A. Hartikainen, A. Daza, E Rasanen and M. A. Sanjuan, Chaotic dynamics creates and destroys branched flow, Phys. Rev. E, 2025, 111(1), 014214. doi: 10.1103/PhysRevE.111.014214

    CrossRef Google Scholar

    [31] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D., 1985, 16, 285-317. doi: 10.1016/0167-2789(85)90011-9

    CrossRef Google Scholar

    [32] F. C. Zhang and F. Xu, Dynamical behavior of the generzlized complex Lorenz chaotic system, J. Appl. Anal. Comp., 2024, 14(4), 1915-1931.

    Google Scholar

    [33] F. C. Zhang, F. Xu and X. Zhang, Qualitative behaviors of a four-dimensional Lorenz system, J. Phys. A: Math. Theor., 2024, 57(9), 095201. doi: 10.1088/1751-8121/ad26ac

    CrossRef Google Scholar

    [34] F. C. Zhang and G. Y. Zhang, Further results on ultimate bound on the trajectories of the Lorenz system, Qual. Theory Dyn. Syst., 2016, 15(1), 221-235. doi: 10.1007/s12346-015-0137-0

    CrossRef Google Scholar

    [35] F. C. Zhang, P. Zhou and F. Xu, Qualitative properties of a physically extended six-dimensional Lorenz system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2024, 34(7), 2450083. doi: 10.1142/S0218127424500834

    CrossRef Google Scholar

    [36] F. F. Zhang, W. Liu, L. Wu and J. Li, Chaotic model and control of an atmospheric convective system coupled with large-scale circulation, Phys. Scr., 2024, 99(4), 045213. doi: 10.1088/1402-4896/ad2bc1

    CrossRef Google Scholar

    [37] X. T. Zhang, J. Liu, J. C. Liang, D. Wang and Y. Sun, Chaos anti-control of coexisting infinite signals and pinning synchronization of a complex-valued laser chain network, Eur. Phys. J. Plus, 2024, 139(65), 1-14. doi: 10.1140/epjp/s13360-023-04826-0

    CrossRef Google Scholar

    [38] J. Zuo, J. Zhang, X. Wei, L. Yang, N. Cheng and J. Lu, Design and application of multisroll conservative chaotic system with no equilibrium, dynamics analysis, circuit implementation, Chaos Soliton. Fract., 2024, 187, 115331. doi: 10.1016/j.chaos.2024.115331

    CrossRef Google Scholar

Figures(8)

Article Metrics

Article views(146) PDF downloads(47) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint