Citation: | Seon Hye An, Nak Eun Cho. SUBORDINATIONS BY CERTAIN UNIVALENT FUNCTIONS ASSOCIATED WITH A FAMILY OF MULTIPLIER TRANSFORMATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 778-791. doi: 10.11948/20230145 |
The purpose of the present paper is to obtain some implications of subordinations by univalent functions in the open unit disk associated with a family of multiplier transformations. Moreover, applications for integral operators are also considered.
[1] | H. Aaisha Farzana, M. P. Jeyaraman and T. Bulboacă, On certain subordination properties of a linear operator, J. Fract. Calc. Appl., 2021, 12, 148-162. |
[2] | S. S. Akanksha, R. N. Ingle, P. T. Reddy and B. Venkateswarlu, Subclass of uniformly convex functions with negative coefficients defined by linear fractional differential operator, J. Fract. Calc. Appl., 2022, 13, 9-20. |
[3] | S. H. An, R. Srivastava and N. E. Cho, New approaches for subordination and superordination of multivalent functions associated with a family of linear operators, accepted in Miskolc Math. Notes, 2023. |
[4] | A. A. Attiya and M. F. Yassen, Some subordination and superordination results associated with generalized Srivastava-Attiya operator, Filomat, 2017(1), 31, 53-60. |
[5] | S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 1969, 135, 429-446. doi: 10.1090/S0002-9947-1969-0232920-2 |
[6] | T. Bulboacă, Integral operators that preserve the subordination, Bull. Korean Math. Soc., 1997, 32, 627-636. |
[7] | T. Bulboacă, Subordination by alpha-convex functions, Kodai Math. J., 2003, 26, 267-278. |
[8] | T. Bulboacă, Generalization of a class of nonlinear averaging integral operators, Math. Nachr., 2005, 278(1-2), 34-42. doi: 10.1002/mana.200310224 |
[9] | J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 2002, 276, 432-445. doi: 10.1016/S0022-247X(02)00500-0 |
[10] | N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, (2003), 37, 39-49. doi: 10.1016/S0895-7177(03)80004-3 |
[11] | N. E. Cho, Sushil Kumar, V. Kumar and V. Ravichandran, Differential subordination and radius estimates for starlike functions associated with the Booth lemniscate, Turkish. J. Math., 2018, 42, 1380-1399. |
[12] | N. E. Cho, Sushil Kumar, V. Kumar and V. Ravichandran, Starlike functions related to the Bell numbers, Symmetry, 2019, 11, Article No. 219. doi: 10.3390/sym11020219 |
[13] | E. Deniz, M. Kamali and S. Korkmaz, A certain subclass of bi-univalent functions associated with Bell numbers and q-Srivastava Attiya operator, AIMS Math., 2020, 5(6), 7259-7271. doi: 10.3934/math.2020464 |
[14] | R. M. El-Ashwah and W. Y. Kota, Some properties for certain multivalent functions associated with differ-integral operator and extended multiplier transformations, J. Fract. Calc. Appl., 2021, 12, 85-93. |
[15] | R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc., 1980, 78, 353-357. |
[16] | D. J. Hallenbeck and T. H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function Theory, Pitman Publishing Limited, London, 1984. |
[17] | I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 1993, 176, 138-147. doi: 10.1006/jmaa.1993.1204 |
[18] | S. S. Kumar, V. Kumar and V. Ravichandran, Subordination and superordination for multivalent functions defined by linear operators, Tamsui Oxf. J. Inf. Math. Sci., 2013, 29(3), 361-387. |
[19] | R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 1965, 16, 755-758. doi: 10.1090/S0002-9939-1965-0178131-2 |
[20] | J. -L. Liu, The Noor integral and strongly starlike functions, J. Math. Anal. Appl., 2001, 261, 441-447. doi: 10.1006/jmaa.2001.7489 |
[21] | J. -L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Nat. Geom., 2002, 21, 81-90. |
[22] | S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 1981, 28, 157-172. |
[23] | S. S. Miller and P. T. Mocanu, Differential Subordination, Theory and Application, Marcel Dekker, Inc., New York, Basel, 2000. |
[24] | S. S. Miller, P. T. Mocanu and M. O. Reade, Subordination-preserving integral operators, Trans. Amer. Math. Soc., 1984, 283, 605-615. doi: 10.1090/S0002-9947-1984-0737887-4 |
[25] | A. O. Mostafa, T. Bulboacă and M. K. Aouf, Sandwich results for multivalent functions defined by generalized Srivastava-Attiya operator, J. Fract. Calc. Appl., 2023, 14(2), Paper No. 2, 11 pp. |
[26] | A. Naik, T. Panigrahi and G. Murugusundaramoorthy, Coefficient estimate for class of meromorphic bi-Bazilevič type functions associated with linear operator defined by convolution, Jordan J. Math. Stat., 2021, 14, 287-305. |
[27] | K. I. Noor, On new classes of integral operators, J. Natur. Geom., 1999, 16, 71-80. |
[28] | K. I. Noor and M. A. Noor, On integral operators, J. Math. Anal. Appl., 1999, 238, 341-352. |
[29] | M. O. Oluwayemi and K. Vijaya, On a study of a class of functions associated with a multiplier transformation, Int. J. Math. Comput. Sci., 2022, 17, 931-935. |
[30] | S. Owa and H. M. Srivastava, Some applications of the generalized Libera integral operator, Proc. Japan Acad. Ser. A Math. Sci., 1986, 62, 125-128. |
[31] | S. Owa and H. M. Srivastava, Some subordination theorems involving a certain family of integral operators, Integral Transforms Spec. Funct., 15, 2004, 445-454. |
[32] | Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Göttingen, 1975. |
[33] | S. Porwal and S. Kumar, New subclasses of bi-univalent functions defined by multiplier transformation, Stud. Univ. Babeş-Bolyai Math., 2020, 65, 47-55. |
[34] | J. K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the class of strongly starlike and strongly convex functions, J. Math. Ineq., 2009, 3, 129-137. |
[35] | G. S. Sǎlǎgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag), 1983, 1013, 362-372. |
[36] | H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms Spec. Funct., 2007, 18, 207-216. |
[37] | B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992, 371-374. |