2024 Volume 14 Issue 4
Article Contents

Ning Zhang, Haodong Wang, Wenxue Li. DUPIRE ITÔ'S FORMULA FOR THE EXPONENTIAL SYNCHRONIZATION OF STOCHASTIC SEMI-MARKOV JUMP SYSTEMS WITH MIXED DELAY UNDER IMPULSIVE CONTROL[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2082-2108. doi: 10.11948/20230195
Citation: Ning Zhang, Haodong Wang, Wenxue Li. DUPIRE ITÔ'S FORMULA FOR THE EXPONENTIAL SYNCHRONIZATION OF STOCHASTIC SEMI-MARKOV JUMP SYSTEMS WITH MIXED DELAY UNDER IMPULSIVE CONTROL[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2082-2108. doi: 10.11948/20230195

DUPIRE ITÔ'S FORMULA FOR THE EXPONENTIAL SYNCHRONIZATION OF STOCHASTIC SEMI-MARKOV JUMP SYSTEMS WITH MIXED DELAY UNDER IMPULSIVE CONTROL

  • This paper emphasizes the exponential synchronization for a class of stochastic semi-Markov jump systems with mixed delay via stochastic hybrid impulsive control. The impulsive sequence includes synchronous and asynchronous impulses with the impulsive gains being a sequence of stochastic variables. Inspired by the idea of average, a concept of "average stochastic impulsive gain" is used to qualify the impulse intensity. Our approach expands Dupire functional Itô's formula to the stochastic semi-Markov jump systems with mixed delay for the first time. Moreover, in view of the established Lyapunov functional, graph theory, and stochastic analysis theory, some exponential synchronization criteria for the systems are derived. The theoretical results are applied to a class of Chua's circuit systems with semi-Markov jump and mixed delay. Some synchronization criteria for the circuit systems are provided. The simulation results verify the effectiveness of the theoretical results.

    MSC: 39B05, 93A10
  • 加载中
  • [1] D. A. Burbano-L., S. Yaghouti, C. Petrarca, M. de Magistris and M. di Bernardo, Synchronization in multiplex networks of Chua's circuits: Theory and experiments, IEEE Transactions on Circuits and Systems Ⅰ-Regular Papers, 2020, 67(3), 927–938. doi: 10.1109/TCSI.2019.2955972

    CrossRef Google Scholar

    [2] J. Chen, Z. Zeng and P. Jiang, Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Networks, 2014, 51, 1–8. doi: 10.1016/j.neunet.2013.11.016

    CrossRef Google Scholar

    [3] T. Chen, X. Liu and Y. Wu, Prescribed-time stabilization of complex networks with intermittent control, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2023. DOI: 10.1109/TCSII.2023.3330851.

    CrossRef Google Scholar

    [4] V. K. R. Chimmula and L. Zhang, Time series forecasting of COVID-19 transmission in Canada using LSTM networks, Chaos Solitons & Fractals, 2020, 135, 109864.

    Google Scholar

    [5] S. V. Dhople, B. B. Johnson, F. Doerfler and A. O. Hamadeh, Synchronization of nonlinear circuits in dynamic electrical networks with general topologies, IEEE Transactions on Circuits and Systems Ⅰ-Regular Papers, 2014, 61(9), 2677–2690. doi: 10.1109/TCSI.2014.2332250

    CrossRef Google Scholar

    [6] S. Dong, G. Chen, M. Liu and Z. Wu, Robust adaptive H-infinity control for networked uncertain semi-Markov jump nonlinear systems with input quantization, Science China-Information Sciences, 2022, 65(8), 189201. doi: 10.1007/s11432-020-3187-8

    CrossRef Google Scholar

    [7] A. Doria-Cerezo, J. M. Olm, M. Di Bernardo and E. Nuno, Modelling and control for bounded synchronization in multi-terminal VSC-HVDC transmission networks, IEEE Transactions on Circuits and Systems Ⅰ-Regular Papers, 2016, 63(6), 916–925. doi: 10.1109/TCSI.2016.2537938

    CrossRef Google Scholar

    [8] N. Du, D. Nguyen, N. Nguyen and G. Yin, Stability of stochastic functional differential equations with random switching and applications, Automatica, 2021, 125, 109410. doi: 10.1016/j.automatica.2020.109410

    CrossRef Google Scholar

    [9] B. Dupire, Functional Ito calculus, Quantitative Finance, 2019, 19(5), 721–729. doi: 10.1080/14697688.2019.1575974

    CrossRef Google Scholar

    [10] X. Ge, Q. Han, L. Ding, Y. Wang and X. Zhang, Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques, 2020, 50(9), 3112–3125.

    Google Scholar

    [11] N. Gunasekaran, G. Zhai and Q. Yu, Sampled-data synchronization of delayed multi-agent networks and its application to coupled circuit, Neurocomputing, 2020, 413, 499–511. doi: 10.1016/j.neucom.2020.05.060

    CrossRef Google Scholar

    [12] B. Guo, Y. Xiao, C. Zhang and Y. Zhao, Graph theory-based adaptive intermittent synchronization for stochastic delayed complex networks with semi-Markov jump, Applied Mathematics and Computation, 2020, 366, 124739. doi: 10.1016/j.amc.2019.124739

    CrossRef Google Scholar

    [13] W. Guo, Y. Zhang and W. Li, Synchronization for the coupled stochastic strict-feedback nonlinear systems with delays under pinning control, Nonlinear Analysis: Hybrid Systems, 2023, 48, 101326. doi: 10.1016/j.nahs.2022.101326

    CrossRef Google Scholar

    [14] Y. Guo and Y. Li, Bipartite leader-following synchronization of fractional-order delayed multilayer signed networks by adaptive and impulsive controllers, Applied Mathematics and Computation, 2022, 430, 127243. doi: 10.1016/j.amc.2022.127243

    CrossRef Google Scholar

    [15] S. Hu and Q. Zhu, Stochastic optimal control and analysis of stability of networked control systems with long delay, Automatica, 2003, 39(11), 1877–1884. doi: 10.1016/S0005-1098(03)00196-1

    CrossRef Google Scholar

    [16] X. Ji, J. Lu, B. Jiang and K. Shi, Distributed synchronization of delayed neural networks: Delay-dependent hybrid impulsive control, IEEE Transactions on Network Science and Engineering, 2022, 9(2), 634–647. doi: 10.1109/TNSE.2021.3128244

    CrossRef Google Scholar

    [17] T. Jia, X. Chen, F. Zhao, J. Cao and J. Qiu, Adaptive fixed-time synchronization of stochastic memristor-based neural networks with discontinuous activations and mixed delays, Journal of the Franklin Institute, 2023, 360(4), 3364–3388. doi: 10.1016/j.jfranklin.2022.11.006

    CrossRef Google Scholar

    [18] X. Jin, S. Wang, J. Qin, W. Zheng and Y. Kang, Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation, IEEE Transactions on Circuits and Systems Ⅰ-Regular Papers, 2018, 65(7), 2243–2255. doi: 10.1109/TCSI.2017.2782729

    CrossRef Google Scholar

    [19] J. Li, H. Jiang, J. Wang, C. Hu and G. Zhang, H infinity exponential synchronization of complex networks: aperiodic sampled-data-based event-triggered control, IEEE Transactions on Cybernetics, 2022, 52(8), 7968–7980. doi: 10.1109/TCYB.2021.3052098

    CrossRef Google Scholar

    [20] S. Li, Y. Zheng and H. Su, Almost sure synchronization of multilayer networks via intermittent pinning noises: A white-noise-based time-varying coupling, IEEE Transactions on Circuits and Systems Ⅰ-Regular Papers, 2021, 68(8), 3460–3473. doi: 10.1109/TCSI.2021.3082005

    CrossRef Google Scholar

    [21] X. Li and G. Yang, Graph theory-based pinning synchronization of stochastic complex dynamical networks, IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(2), 427–437. doi: 10.1109/TNNLS.2016.2515080

    CrossRef Google Scholar

    [22] H. Liu, F. Zhao, M. Wang, J. Qiu and X. Chen, Finite-time pinning impulsive synchronization of stochastic complex networks with mixed delays, Applied Mathematical Modelling, 2023, 117, 840–850. doi: 10.1016/j.apm.2023.01.023

    CrossRef Google Scholar

    [23] X. Liu, D. W. C. Ho, Q. Song and W. Xu, Finite/Fixed-time pinning synchronization of complex networks with stochastic disturbances, IEEE Transactions on Cybernetics, 2019, 49(6), 2398–2403. doi: 10.1109/TCYB.2018.2821119

    CrossRef Google Scholar

    [24] Y. Liu, J. Liu and W. Li, Stabilization of highly nonlinear stochastic coupled systems via periodically intermittent control, IEEE Transactions on Automatic Control, 2021, 66(10), 4799–4806. doi: 10.1109/TAC.2020.3036035

    CrossRef Google Scholar

    [25] Y. Liu, Z. Wang and X. Liu, Global exponential stability of generalized recurrent neural networks with discrete and distributed delays, Neural Networks, 2006, 19(5), 667–675. doi: 10.1016/j.neunet.2005.03.015

    CrossRef Google Scholar

    [26] J. Lu, D. W. C. Ho and J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 2010, 46(7), 1215–1221. doi: 10.1016/j.automatica.2010.04.005

    CrossRef Google Scholar

    [27] D. Nesic and A. Teel, Input-output stability properties of networked control systems, IEEE Transactions on Automatic Control, 2004, 49(10), 1650–1667. doi: 10.1109/TAC.2004.835360

    CrossRef Google Scholar

    [28] D. Nguyen and G. Yin, Stability of stochastic functional differential equations with regime-switching: Analysis using Dupire's functional Ito formula, Potential Analysis, 2020, 53(1), 247–265. doi: 10.1007/s11118-019-09767-x

    CrossRef Google Scholar

    [29] H. Shen, M. Chen, Z. Wu, J. Cao and J. Park, Reliable event-triggered asynchronous extended passive control for semi-Markov jump fuzzy systems and its application, IEEE Transactions on Fuzzy Systems, 2020, 28(8), 1708–1722.

    Google Scholar

    [30] H. Shen, F. Li, J. Cao, Z. Wu and G. Lu, Fuzzy-model-based output feedback reliable control for network-based semi-Markov jump nonlinear systems subject to redundant channels, IEEE Transactions on Cybernetics, 2020, 50(11), 4599–4609. doi: 10.1109/TCYB.2019.2959908

    CrossRef Google Scholar

    [31] X. Song, R. Zhang, C. Ahn and S. Song, Synchronization for semi-Markovian jumping reaction-diffusion complex dynamical networks: A space-time sampled-data control scheme, IEEE Transactions on Network Science and Engineering, 2022, 9(4), 2684–2696. doi: 10.1109/TNSE.2022.3168867

    CrossRef Google Scholar

    [32] J. Sun, M. Zang, P. Liu and Y. Wang, A secure communication scheme of three-variable chaotic coupling synchronization based on DNA chemical reaction networks, IEEE Transactions on Signal Processing, 2022, 70, 2362–2373. doi: 10.1109/TSP.2022.3173154

    CrossRef Google Scholar

    [33] Y. Tian, H. Yan, H. Zhang, J. Cheng and H. Shen, Asynchronous output feedback control of hidden semi-Markov jump systems with random mode-dependent delays, IEEE Transactions on Automatic Control, 2022, 67(8), 4107–4114. doi: 10.1109/TAC.2021.3110006

    CrossRef Google Scholar

    [34] H. Wang, S. Duan, T. Huang and J. Tan, Synchronization of memristive delayed neural networks via hybrid impulsive control, Neurocomputing, 2017, 267, 615–623. doi: 10.1016/j.neucom.2017.06.028

    CrossRef Google Scholar

    [35] N. Wang, X. Li, J. Lu and F. E. Alsaadi, Unified synchronization criteria in an array of coupled neural networks with hybrid impulses, Neural Networks, 2018, 101, 25–32. doi: 10.1016/j.neunet.2018.01.017

    CrossRef Google Scholar

    [36] P. Wang, B. Zhang and H. Su, Stabilization of stochastic uncertain complex-valued delayed networks via aperiodically intermittent nonlinear control, IEEE Transactions on Systems Man Cybernetics-Systems, 2019, 49(3), 649–662. doi: 10.1109/TSMC.2018.2818129

    CrossRef Google Scholar

    [37] Z. Wang, J. Cao, Z. Duan and X. Liu, Synchronization of coupled Duffing-type oscillator dynamical networks, Neurocomputing, 2014, 136, 162–169. doi: 10.1016/j.neucom.2014.01.016

    CrossRef Google Scholar

    [38] Y. Wu, Z. Sun, G. Ran and L. Xue, Intermittent control for fixed-time synchronization of coupled networks, IEEE/CAA Journal of Automatica Sinica, 2023, 10(6), 1488–1490. doi: 10.1109/JAS.2023.123363

    CrossRef Google Scholar

    [39] D. Xu, J. Pang and H. Su, Bipartite synchronization of signed networks via aperiodically intermittent control based on discrete-time state observations, Neural Networks, 2021, 144, 307–319. doi: 10.1016/j.neunet.2021.08.035

    CrossRef Google Scholar

    [40] Y. Xu, T. Lin, X. Liu and W. Li, Exponential bipartite synchronization of fractional-order multilayer signed networks via hybrid impulsive control, IEEE Transactions on Cybernetics, 2023, 53(6), 3926–3938. doi: 10.1109/TCYB.2022.3190413

    CrossRef Google Scholar

    [41] N. Yang, X. Gu and H. Su, Event-triggered delayed impulsive control for functional differential systems on networks, Communications in Nonlinear Science and Numerical Simulation, 2024. DOI: 10.1016/j.cnsns.2024.107850.

    CrossRef Google Scholar

    [42] X. Yang, X. Li, J. Lu and Z. Cheng, Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control, IEEE Transactions on Cybernetics, 2020, 50(9), 4043–4052. doi: 10.1109/TCYB.2019.2938217

    CrossRef Google Scholar

    [43] W. Yu, G. Chen and J. Cao, Adaptive synchronization of uncertain coupled stochastic complex networks, Asian Journal of Control, 2011, 13(3), 418–429. doi: 10.1002/asjc.180

    CrossRef Google Scholar

    [44] C. Zhang, W. Li and K. Wang, Exponential synchronization of stochastic coupled oscillators networks with delays, Applicable Analysis, 2017, 96(6), 1058–1075. doi: 10.1080/00036811.2016.1178240

    CrossRef Google Scholar

    [45] H. Zhang, Z. Qiu and L. Xiong, Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump, Neurocomputing, 2019, 333, 395–406. doi: 10.1016/j.neucom.2018.12.028

    CrossRef Google Scholar

    [46] N. Zhang, X. Wang and W. Li, Stability for multi-linked stochastic delayed complex networks with stochastic hybrid impulses by Dupire Itô's formula, Nonlinear Analysis-Hybrid Systems, 2022, 45, 101200. doi: 10.1016/j.nahs.2022.101200

    CrossRef Google Scholar

    [47] N. Zhang, X. Wang, C. Tong and W. Li, Semi-global exponential stability of stochastic nonlinear functional sampling systems by emulation approach, Communications in Nonlinear Science and Numerical Simulation, 2023, 125(6), 107336.

    Google Scholar

    [48] W. Zhang, X. Yang and C. Li, Fixed-time stochastic synchronization of complex networks via continuous control, IEEE Transactions on Cybernetics, 2019, 49(8), 3099–3104. doi: 10.1109/TCYB.2018.2839109

    CrossRef Google Scholar

    [49] X. Zhao, L. Liu, H. Wang and M. Fan, Ecological effects of predator harvesting and environmental noises on oceanic coral reefs, Bulletin of Mathematical Biology, 2023, 85(7), 59. doi: 10.1007/s11538-023-01166-z

    CrossRef Google Scholar

    [50] H. Zhou, S. Li and C. Zhang, Synchronization of hybrid switching diffusions delayed networks via stochastic event-triggered control, Neural Networks, 2023, 159, 1–13. doi: 10.1016/j.neunet.2022.11.034

    CrossRef Google Scholar

Figures(8)  /  Tables(4)

Article Metrics

Article views(1281) PDF downloads(362) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint