2024 Volume 14 Issue 4
Article Contents

Shengqiang Zhang, Zhixian Yu, Yanling Meng. STABILITY OF TRAVELING WAVE FRONTS FOR NONLOCAL DIFFUSIVE SYSTEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2063-2081. doi: 10.11948/20230192
Citation: Shengqiang Zhang, Zhixian Yu, Yanling Meng. STABILITY OF TRAVELING WAVE FRONTS FOR NONLOCAL DIFFUSIVE SYSTEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2063-2081. doi: 10.11948/20230192

STABILITY OF TRAVELING WAVE FRONTS FOR NONLOCAL DIFFUSIVE SYSTEMS

  • The paper is concerned with stability of traveling wave fronts for nonlocal diffusive systems. We adopt L1-weighted, L1- and L2-energy estimates for the perturbation systems, and show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave fronts provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev space.

    MSC: 35K57, 35C07, 35R20, 92D25
  • 加载中
  • [1] J. Anderson and S. Zbarsky, Stability and instability of traveling wave solutions to nonlinear wave equations, Int. Math. Res. Notices, 2023, 2023(1), 95-184. doi: 10.1093/imrn/rnab250

    CrossRef Google Scholar

    [2] P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., 1997, 138, 105-136. doi: 10.1007/s002050050037

    CrossRef Google Scholar

    [3] V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, J. Quart. Appl. Math., 1988, 46, 431-450. doi: 10.1090/qam/963580

    CrossRef Google Scholar

    [4] V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. Épidemiol. Sante Publique, 1979, 27, 121-132.

    Google Scholar

    [5] V. Capasso and R. E. Wilson, Analysis of reaction-diffusion system modeling man-environment-man epidemics, M. Society for Industrial and Applied Mathematics, 1997, 57, 327-346. doi: 10.1137/S0036139995284681

    CrossRef Google Scholar

    [6] J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 2004, 132, 2433-2439. doi: 10.1090/S0002-9939-04-07432-5

    CrossRef Google Scholar

    [7] X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations, Adv. Differ. Equ., 1997, 2, 125-160.

    Google Scholar

    [8] J. Coville, On uniqueness and monotonicity of solutions of nonlocal reaction diffusion equation, Ann. Mat. Pura Appl., 2006, 185, 461-485. doi: 10.1007/s10231-005-0163-7

    CrossRef Google Scholar

    [9] J. Coville and L. Dupaigne, Propagation speed of travelling fronts in nonlocal reaction-diffusion equation, Nonlinear Anal. TMA, 2005, 60, 797-819. doi: 10.1016/j.na.2003.10.030

    CrossRef Google Scholar

    [10] J. Coville and L. Dupaigne, On a non-local eqution arising in population dynamics, Proc. Roy. Soc. Edinburgh, 2007, 137A, 727-755.

    Google Scholar

    [11] Y. Guo, S. S. Ge and A. Arbi, Stability of traveling waves solutions for nonlinear cellular neural networks with distributed delays, J. Syst. Sci. Complex., 2022, 35(1), 18-31. doi: 10.1007/s11424-021-0180-7

    CrossRef Google Scholar

    [12] C. H. Hsu and T. S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 2013, 26, 121-139. doi: 10.1088/0951-7715/26/1/121

    CrossRef Google Scholar

    [13] C. H. Hsu, T. S. Yang and Z. X. Yu, Existence and exponential stability of traveling waves for delayed reaction-diffusion systems, Nonlinearity, 2018, 31, 838-863. doi: 10.1088/1361-6544/aa99a1

    CrossRef Google Scholar

    [14] R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersal equation with monostable nonlinearity, Discrete Contin. Dyn. Syst.-Series A, 2012, 32, 3621-3649. doi: 10.3934/dcds.2012.32.3621

    CrossRef Google Scholar

    [15] C. T. Lee, M. F. Hoopes, J. Diehl, W. Gilliland, G. Huxel, E. V. Leaver, K. Mc-Cann, J. Umbanhowar and A. Mogilner, Non-local concepts in models in biology, J. Theor. Biol., 2001, 210, 201-219. doi: 10.1006/jtbi.2000.2287

    CrossRef Google Scholar

    [16] K. P. Leisman, J. C. Bronski, M. A. Johnson, et al., Stability of traveling wave solutions of nonlinear dispersive equations of NLS type, Arch. Rational Mech. Anal., 2021, 240, 927-969. doi: 10.1007/s00205-021-01625-8

    CrossRef Google Scholar

    [17] W. T. Li, W. B. Xu and L. Zhang, Traveling waves and entire solutions for an epidemic model with asymmetric dispersal, Discrete Contin. Dyn. Syst.-Series A, 2017, 37, 2483-2512. doi: 10.3934/dcds.2017107

    CrossRef Google Scholar

    [18] W. T. Li, L. Zhang and G. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Nonlinear Anal., 2015, 35, 1531-1560.

    Google Scholar

    [19] C. K. Lin and M. Mei, On traveling wavefronts of the Nicholson's blowflies equation with diffusion, Proc. R. Soc. Edinburgh A, 2010, 140, 135-152. doi: 10.1017/S0308210508000784

    CrossRef Google Scholar

    [20] G. Y. Lv and M. X. Wang, Nonlinear stability of traveling wave fronts for delayed reaction diffusion systems, Nonlinear Anal. RWA, 2012, 13, 1854-1865. doi: 10.1016/j.nonrwa.2011.12.013

    CrossRef Google Scholar

    [21] G. Y. Lv and M. X. Wang, Nonlinear stability of traveling wave fronts for nonlocal delayed reaction-diffusion equations, J. Math. Anal. Appl., 2012, 385, 1094-1106. doi: 10.1016/j.jmaa.2011.07.033

    CrossRef Google Scholar

    [22] M. Ma, W. Meng and C. Ou, Impact of nonlocal dispersal and time periodicity on the global exponential stability of bistable traveling waves, Stud. Appl. Math., 2023, 150(3), 818-840. doi: 10.1111/sapm.12557

    CrossRef Google Scholar

    [23] S. W. Ma and X. F. Zou, Existence, uniqueness and stability of traveling waves in a discrete reaction diffusion monostable equation with delay, J. Differ. Equ., 2005, 217, 54-87. doi: 10.1016/j.jde.2005.05.004

    CrossRef Google Scholar

    [24] R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction diffusion systems, Trans. Amer. Math. Soc., 1990, 321, 1-44.

    Google Scholar

    [25] J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 2003, 184, 201-222. doi: 10.1016/S0025-5564(03)00041-5

    CrossRef Google Scholar

    [26] M. Mei, C. H. Ou and X. Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reation-diffusion equations, SIAM J. Math. Anal., 2010, 42, 2762-2790. doi: 10.1137/090776342

    CrossRef Google Scholar

    [27] M. Mei and J. W. H. So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation, Proc. R. Soc. Edinb., 2008, 138, 551-568. doi: 10.1017/S0308210506000333

    CrossRef Google Scholar

    [28] M. Mei, J. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. R. Soc. Edinb., 2004, 134, 579-594. doi: 10.1017/S0308210500003358

    CrossRef Google Scholar

    [29] M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations, Int. J. Numer. Anal. Model. B, 2011, 2, 379-401.

    Google Scholar

    [30] Y. L. Meng, Z. X. Yu and C. H. Hsu, Entire solutions for a delayed nonlocal dispersal system with monostable nonlinearities, Nonlinearity, 2019, 32, 1206-1236. doi: 10.1088/1361-6544/aaf2e7

    CrossRef Google Scholar

    [31] A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Springer-Verlag, New York, 1980.

    Google Scholar

    [32] S. Pan, Traveling wave fronts of delayed nonlocal diffusion systems without quasimonotonicity, J. Math. Anal. Appl., 2008, 346, 415-424. doi: 10.1016/j.jmaa.2008.05.057

    CrossRef Google Scholar

    [33] S. Pan, W. Li and G. Lin, Traveling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 2009, 60, 377-392. doi: 10.1007/s00033-007-7005-y

    CrossRef Google Scholar

    [34] S. Pan, W. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay, Nonlinear Anal. TMA, 2009, 72, 3150-3158.

    Google Scholar

    [35] S. X. Pan and G. Lin, Invasion traveling wave solutions of a competitive systems with dispersal, Bound. Value Probl., 2012, 2012, 120-130. doi: 10.1186/1687-2770-2012-120

    CrossRef Google Scholar

    [36] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 1976, 22, 312-355. doi: 10.1016/0001-8708(76)90098-0

    CrossRef Google Scholar

    [37] K. Schumacher, Travelling-front solutions for integro-differential equations, I., J. Reine Angew. Math., 1980, 316, 54-70.

    Google Scholar

    [38] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, New York, 1997.

    Google Scholar

    [39] H. L. Smith and X. Q. Zhao, Global asymptotic stability of travelling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 2000, 31, 514-534. doi: 10.1137/S0036141098346785

    CrossRef Google Scholar

    [40] Y. Sun, W. T. Li and Z. C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity, Nonlinear Anal. TMA, 2011, 74, 814-826. doi: 10.1016/j.na.2010.09.032

    CrossRef Google Scholar

    [41] H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 1979, 306, 94-121.

    Google Scholar

    [42] A. I. Volpert, V. A. Volpert and V. A. Volpert, Travelling Wave Solutions of Parabolic Systems, Translations Ofmathematical Monographs, Vol. 104, Providence (RI): American Mathematical Society, 1994.

    Google Scholar

    [43] L. L. Wang and Y. Tian, Existence and uniqueness of the solution for hilfer neural networks with delays, J. Nonl. Mod. Anal., 2023, 5, 366-376.

    Google Scholar

    [44] Z. C. Wang, W. T. Li and S. G. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dyn. Diff. Equ., 2008, 20, 573-607. doi: 10.1007/s10884-008-9103-8

    CrossRef Google Scholar

    [45] S. L. Wu, W. T. Li and S. Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay, J. Math. Anal. Appl., 2009, 360, 439-458. doi: 10.1016/j.jmaa.2009.06.061

    CrossRef Google Scholar

    [46] X. Wu and Z. Ma, Exponential stability of traveling waves for a nonlocal dispersal SIR model with delay, Open Math., 2022, 20(1), 1451-1469. doi: 10.1515/math-2022-0508

    CrossRef Google Scholar

    [47] Z. Q. Xu and D. M. Xiao, Regular traveling waves for a nonlocal diffusion equation, J. Differ. Equ., 2015, 258, 191-223. doi: 10.1016/j.jde.2014.09.008

    CrossRef Google Scholar

    [48] H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., 2009, 45, 925-953.

    Google Scholar

    [49] Y. R. Yang, W. T. Li and S. L. Wu, Stability of traveling waves in a monostable delayed system without quasi-monotonicity, Nonlinear Anal. RWA., 2013, 14, 1511-1526. doi: 10.1016/j.nonrwa.2012.10.015

    CrossRef Google Scholar

    [50] Y. R. Yang, W. T. Li and S. L. Wu, Exponential stability of traveling fronts in a diffusion epidemic system with delay, Nonlinear Anal. RWA., 2011, 12, 1223-1234. doi: 10.1016/j.nonrwa.2010.09.017

    CrossRef Google Scholar

    [51] C. Yang and N. Rodriguez, Existence and stability traveling wave solutions for a system of social outbursts, J. Math. Anal. Appl., 2021, 494(1), 124583. doi: 10.1016/j.jmaa.2020.124583

    CrossRef Google Scholar

    [52] Z. X. Yu and M. Mei, Uniqueness and stability of traveling waves for cellular neural networks with multiple delays, J. Differ. Equ., 2016, 260, 241-267. doi: 10.1016/j.jde.2015.08.037

    CrossRef Google Scholar

    [53] Z. X. Yu, Y. J. Wan and C. H. Hsu, Wave propagation and its stability for a class of discrete diffusion systems, Z. Angew. Math. Phys., 2020, 194,

    Google Scholar

    [54] Z. X. Yu, F. Xu and W. G. Zhang, Stability of invasion traveling waves for a competition system with nonlocal dispersals, Appl. Anal., 2017, 96, 1107-1125. doi: 10.1080/00036811.2016.1178242

    CrossRef Google Scholar

    [55] Z. X. Yu and R. Yuan, Existence and asymptotics of traveling waves for nonlocal diffusion systems, Chaos, Solitons and Fractals, 2012, 45, 1361-1367. doi: 10.1016/j.chaos.2012.07.002

    CrossRef Google Scholar

    [56] Z. X. Yu and R. Yuan, Traveling waves of a nonlocal dispersal delayed age-structured population model, Japan J. Indust. Appl. Math., 2013, 30, 165-184. doi: 10.1007/s13160-012-0092-y

    CrossRef Google Scholar

    [57] G. B. Zhang, Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal. TMA, 2011, 74, 5030-5047. doi: 10.1016/j.na.2011.04.069

    CrossRef Google Scholar

    [58] H. Zhang, H. Izuhara and Y. Wu, Asymptotic stability of two types of traveling waves for some predator-prey models, Discrete Contin. Dyn. Syst.-Series B, 2021, 26(4).

    Google Scholar

    [59] T. Zhang, W. Li, Y. Han, et al., Global exponential stability of bistable traveling waves in a reaction-diffusion system with cubic nonlinearity, Commun. Pur. Appl. Anal., 2023, 22(7), 2215-2232. doi: 10.3934/cpaa.2023064

    CrossRef Google Scholar

Article Metrics

Article views(1053) PDF downloads(307) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint