2023 Volume 13 Issue 6
Article Contents

Yue Tang, Inkyung Ahn, Zhigui Lin. THE SEIR MODEL WITH PULSE AND DIFFUSION OF VIRUS IN THE ENVIRONMENT[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3606-3631. doi: 10.11948/20230207
Citation: Yue Tang, Inkyung Ahn, Zhigui Lin. THE SEIR MODEL WITH PULSE AND DIFFUSION OF VIRUS IN THE ENVIRONMENT[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3606-3631. doi: 10.11948/20230207

THE SEIR MODEL WITH PULSE AND DIFFUSION OF VIRUS IN THE ENVIRONMENT

  • Author Bio: Email: 1084913416@qq.com(Y. Tang); Email: ahnik@korea.ac.kr(I. Ahn)
  • Corresponding author: Email: zglin68@hotmail.com (Z. Lin)
  • Fund Project: The second and third authors are supported by the National Natural Science Foundation of China (No. 12271470), and the second author is also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022R1F1A1063068)
  • This paper addresses a reaction-diffusion problem featuring impulsive effects under Neumann boundary conditions. The model simulates the periodic eradication of viruses in an environment. Initially, we establish the well-posedness of the reaction-diffusion model. We define the basic reproduction number $R_0$ for the problem in the absence of pulsing and compute the principal eigenvalue of the corresponding elliptic eigenvalue problem. Utilizing Lyapunov functionals and Green's first identity, we derive the global threshold dynamics of the system. Specifically, when $R_0 < 1$, the disease-free equilibrium is globally asymptotically stable; conversely, if $R_0 > 1$, the system exhibits uniform persistence, and the endemic equilibrium is globally asymptotically stable. Additionally, we consider the generalized principal eigenvalues for the problem with pulsing and provide sufficient conditions for the stability of both the disease-free equilibrium and the positive periodic solution. Finally, we corroborate our theoretical findings through numerical simulations, particularly discussing the impacts of periodic environmental cleaning.

    MSC: 35K55, 35K57, 35R35, 92D30
  • 加载中
  • [1] N. Ahmed, S. S. Tahira, M. Rafiq, et al., Positivity preserving operator splitting nonstandard finite difference methods for SEIR reaction diffusion model, Open Math., 2019, 17, 313-330 doi: 10.1515/math-2019-0027

    CrossRef Google Scholar

    [2] L. J. Allen, B. M. Bolker, Y. Lou, et al., Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 2008, 21(1), 1-20 doi: 10.3934/dcds.2008.21.1

    CrossRef Google Scholar

    [3] R. J. Boer and A. S. Perelson, Quantifying T lymphocyte turnover, J. Theo. Biol., 2013, 327, 45-87 doi: 10.1016/j.jtbi.2012.12.025

    CrossRef Google Scholar

    [4] J. M. Boyce, Environmental contamination makes an important contribution to hospital infection, J. Hosp. Infect., 2007, 65, 50-54 doi: 10.1016/S0195-6701(07)60015-2

    CrossRef Google Scholar

    [5] J. M. Boyce, G. Potter-Bynoe, C. Chenevert, et al., Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications, Infect. Control Hosp. Epidemiol., 1997, 18(9), 622-627 doi: 10.2307/30141488

    CrossRef Google Scholar

    [6] R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley Sons, New York, 2004

    Google Scholar

    [7] F. Capone, V. De Cataldis and R. De Luca, On the Stability of a SEIR Reaction Diffusion Model for Infections Under Neumann Boundary Conditions, Acta Appl. Math., 2014, 132(1), 165-176 doi: 10.1007/s10440-014-9899-7

    CrossRef Google Scholar

    [8] S. J. Dancer, Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning, Lancet Infect. Dis., 2008, 8(2), 101-113 doi: 10.1016/S1473-3099(07)70241-4

    CrossRef Google Scholar

    [9] S. J. Dancer, The role of environmental cleaning in the control of hospital acquired infection, J. Hosp. Infect., 2009, 73(4), 378-385 doi: 10.1016/j.jhin.2009.03.030

    CrossRef Google Scholar

    [10] A. Haase, K. Henry, M. Zupancic, et al., Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science, 1996, 274(5289), 985-989 doi: 10.1126/science.274.5289.985

    CrossRef Google Scholar

    [11] J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, Providence, Rhode Island, 1988

    Google Scholar

    [12] X. Z. Li, G. Gupur and G. T. Zhu, Threshold and stability results for an age-structured SEIR epidemic model, Comput. Math. Appl., 2001, 42(6-7), 883-907

    Google Scholar

    [13] Y. J. Lou and X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 2011, 62(4), 543-568 doi: 10.1007/s00285-010-0346-8

    CrossRef Google Scholar

    [14] S. Nakaoka, S. Iwami and K. Sato, Dynamics of HIV infection in lymphoid tissue network, J. Math. Biol., 2016, 72(4), 909-938 doi: 10.1007/s00285-015-0940-x

    CrossRef Google Scholar

    [15] D. F. Pang and Y. N. Xiao, The SIS model with diffusion of virus in the environment, Math. Biosci. Eng., 2019, 16(4), 2852-2874 doi: 10.3934/mbe.2019141

    CrossRef Google Scholar

    [16] M. Pedersen and Z. G. Lin, The profile near blowup time for solutions of diffusion systems coupled with localized nonlinear reactions, Nonlinear Anal., 2002, 50(7), 1013-1024 doi: 10.1016/S0362-546X(01)00798-2

    CrossRef Google Scholar

    [17] R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part Ⅰ, J. Diff. Equ., 2009, 247(4), 1096-1119 doi: 10.1016/j.jde.2009.05.002

    CrossRef Google Scholar

    [18] R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 2009, 25(5), 1451-1471

    Google Scholar

    [19] L. Q. Pu, Z. G. Lin and Y. Lou, A West Nile virus nonlocal model with free boundaries and seasonal succession, J. Math. Biol., 2023, 86(2), 1-52

    Google Scholar

    [20] L. B. Rong and A. S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci., 2009, 217(1), 77-87 doi: 10.1016/j.mbs.2008.10.006

    CrossRef Google Scholar

    [21] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society Providence, Providence, Rhode Island, 1995

    Google Scholar

    [22] H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 2001, 47(9), 6169-6179 doi: 10.1016/S0362-546X(01)00678-2

    CrossRef Google Scholar

    [23] F. B. Wang, Y. Huang and X. F. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 2014, 93(11), 2312-2329 doi: 10.1080/00036811.2014.955797

    CrossRef Google Scholar

    [24] J. L. Wang and J. Yang, T. Kuniya, Dynamics of a PDE viral infection model incorporating cell-to-cell transmission, J. Math. Anal. Appl., 2016, 444(2), 1542-1564 doi: 10.1016/j.jmaa.2016.07.027

    CrossRef Google Scholar

    [25] S. L. Wang, X. Y. Song and Z. H. Ge, Dynamics analysis of a delayed viral infection model with immune impairment, Appl. Math. Model., 2011, 35(10), 4877-4885 doi: 10.1016/j.apm.2011.03.043

    CrossRef Google Scholar

    [26] W. D. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 2012, 11(4), 1652-1673 doi: 10.1137/120872942

    CrossRef Google Scholar

    [27] X. Wang, Y. N. Xiao, J. R. Wang, et al., A mathematical model of effects of environmental contamination and presence of volunteers on hospital infections in China, J. Theo. Biol., 2012, 293, 161-173 doi: 10.1016/j.jtbi.2011.10.009

    CrossRef Google Scholar

    [28] X. Y. Wang, J. Y. Yang and X. F. Luo, Asymptotical profiles of a viral infection model with multi-target cells and spatial diffusion, Comput. Math. Appl., 2019, 77(2), 389-406

    Google Scholar

    [29] D. J. Weber and W. A. Rutala, Role of environmental contamination in the transmission of vancomycin-resistant enterococci, Infect. Control Hosp. Epidemiol., 1997, 18(5), 306-309 doi: 10.1086/647616

    CrossRef Google Scholar

    [30] R. Xu and C. W. Song, Dynamics of an HIV infection model with virus diffusion and latently infected cell activation, Nonlinear Anal., 2022, 67, 103618 doi: 10.1016/j.nonrwa.2022.103618

    CrossRef Google Scholar

    [31] C. Y. Yang and J. Wang, Basic reproduction numbers for a class of reaction-diffusion epidemic models, Bull. Math. Biol., 2020, 82(8), 1-25

    Google Scholar

    [32] L. Zhang, Z. C. Wang and X. Q. Zhao, Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period, J. Diff. Equ., 2015, 258(9), 3011-3036 doi: 10.1016/j.jde.2014.12.032

    CrossRef Google Scholar

    [33] M. Y. Zhang, J. GE and Z. G. Lin, Logistic diffusion problem and its analysis on three types of domains, Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(01), 17-23

    Google Scholar

    [34] X. Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2017

    Google Scholar

    [35] X. Q. Zhao, Basic Reproduction Ratios for Periodic Compartmental Models with Time Delay, J. Dyn. Diff. Equ., 2017, 29(1), 67-82. doi: 10.1007/s10884-015-9425-2

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(1327) PDF downloads(401) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint