2023 Volume 13 Issue 6
Article Contents

Xiaofeng Yan, Haiyan Wang, Yulian An. FORECASTING SYSTEMIC RISK OF CHINA'S BANKING INDUSTRY BY PARTIAL DIFFERENTIAL EQUATIONS MODEL AND COMPLEX NETWORK[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3632-3654. doi: 10.11948/20230306
Citation: Xiaofeng Yan, Haiyan Wang, Yulian An. FORECASTING SYSTEMIC RISK OF CHINA'S BANKING INDUSTRY BY PARTIAL DIFFERENTIAL EQUATIONS MODEL AND COMPLEX NETWORK[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3632-3654. doi: 10.11948/20230306

FORECASTING SYSTEMIC RISK OF CHINA'S BANKING INDUSTRY BY PARTIAL DIFFERENTIAL EQUATIONS MODEL AND COMPLEX NETWORK

  • Author Bio: Email: 15618225103@163.com(X. Yan); Email: haiyan.wang@asu.edu(H. Wang)
  • Corresponding author: Email: anyl@shisu.edu.cn(Y. An)
  • Fund Project: This work is supported by the National Natural Science Foundation of China (grant numbers: 12071302, 72071098), and Mentor Academic Guidance Program of Shanghai International Studies University (grant number: 2022113028)
  • The monitoring and controlling of systemic risk have increasingly become the focus of attention in the financial field. It is important and difficult to accurately forecast systemic financial risk. In this paper, we propose a spatio-temporal partial differential equation model to describe the systemic risk of China's Banking Industry based on network, clustering, and real date of 24 China's A-share listed banks. The model considers the combined influence of local risk and transboundary contagion effects, and the prediction relative accuracy is up to 95%. Simulation results confirm that strict joint control measures, the timeliness of central bank intervention, and differences in bank strategies are efficient for reducing systemic risk. To our knowledge, this is the first paper to apply a PDE model to forecast systemic financial risk.

    MSC: 35Q80, 35K57, 91B30, 91B84
  • 加载中
  • [1] D. Acemoglu, A. Ozdaglar and A. Tahbaz-Salehi, Systemic risk and stability in financial networks, National Bureau of Economic Research, Inc, 2013, (2). DOI: 10.1257/aer.20130456.

    CrossRef Google Scholar

    [2] V. V. Acharya, L. H. Pedersen, T. Philippon and M. Richardson, Measuring systemic risk, The review of financial studies, 2017, 30(1), 2-47. DOI: 10.1093/rfs/hhw088.

    CrossRef Google Scholar

    [3] T. Adrian and M. K. Brunnermeier, CoVaR, Tech. rep., National Bureau of Economic Research, 2011. DOI: http://www.nber.org/papers/w17454.

    Google Scholar

    [4] M. Alexandre, T. C. Silva, C. Connaughton and F. A. Rodrigues, The drivers of systemic risk in financial networks: a data-driven machine learning analysis, Chaos, Solitons & Fractals, 2021, 153, 111588. DOI: 10.1016/j.chaos.2021.111588.

    CrossRef Google Scholar

    [5] F. Allen and D. Gale, Financial contagion, Journal of political economy, 2000, 108(1), 1-33. DOI: 10.1086/262109.

    CrossRef Google Scholar

    [6] L. Allen, T. G. Bali and Y. Tang, Does systemic risk in the financial sector predict future economic downturns?, The Review of Financial Studies, 2012, 25(10), 3000-3036. DOI: 10.1093/rfs/hhs094.

    CrossRef Google Scholar

    [7] S. Behrendt, T. Dimpfl, F. J. Peter and D. J. Zimmermann, Rtransferentropy—quantifying information flow between different time series using effective transfer entropy, SoftwareX, 2019, 10, 100265. DOI: 10.1016/j.softx.2019.100265.

    CrossRef Google Scholar

    [8] A. R. Benson, D. F. Gleich and J. Leskovec, Higher-order organization of complex networks, Science, 2016, 353(6295), 163-166. DOI: 10.1126/science.aad9029.

    CrossRef Google Scholar

    [9] M. Billio, M. Getmansky, A. W. Lo and L. Pelizzon, Econometric measures of connectedness and systemic risk in the finance and insurance sectors, Journal of financial economics, 2012, 104(3), 535-559. DOI: 10.1016/j.jfineco.2011.12.010.

    CrossRef Google Scholar

    [10] R. Bookstaber, M. Paddrik and B. Tivnan, An agent-based model for financial vulnerability, Journal of Economic Interaction and Coordination, 2018, 13(2), 433-466. DOI: 10.1016/j.jbankfin.2013.02.032.

    CrossRef Google Scholar

    [11] F. Brauer, Compartmental models in epidemiology, Mathematical epidemiology, 2008, 19-79. DOI: 10.1007/978-3-540-78911-6.

    CrossRef Google Scholar

    [12] C. Brownlees and R. F. Engle, Srisk: A conditional capital shortfall measure of systemic risk, The Review of Financial Studies, 2017, 30(1), 48-79. DOI: 10.1093/rfs/hhw060.

    CrossRef Google Scholar

    [13] L. Faes, D. Marinazzo, A. Montalto and G. Nollo, Lag-specific transfer entropy as a tool to assess cardiovascular and cardiorespiratory information transfer, IEEE Transactions on Biomedical Engineering, 2014, 61(10), 2556-2568. DOI: 10.1109/TBME.2014.2323131.

    CrossRef Google Scholar

    [14] D. Fanelli and F. Piazza, Analysis and forecast of COVID-19 spreading in china, italy and france, Chaos, Solitons & Fractals, 2020, 134, 109761. DOI: 10.1016/j.chaos.2020.109761.

    CrossRef Google Scholar

    [15] A. Friedman, Partial Differential Equations of Parabolic Type, Courier Dover Publications, 2008. DOI: 10.1007/978-3-0348-7922-4.

    CrossRef Google Scholar

    [16] Y.-C. Gao, R. Tan, C.-J. Fu and S.-M. Cai, Revealing stock market risk from information flow based on transfer entropy: The case of chinese a-shares, Physica A: Statistical Mechanics and its Applications, 2023, 128982. DOI: 10.1016/j.physa.2023.128982.

    CrossRef Google Scholar

    [17] C.-P. Georg, The effect of the interbank network structure on contagion and common shocks, Journal of Banking & Finance, 2013, 37(7), 2216-2228. DOI: 10.1016/j.jbankfin.2013.02.032.

    CrossRef Google Scholar

    [18] R. Greenwood, A. Landier and D. Thesmar, Vulnerable banks, Journal of Financial Economics, 2015, 115(3), 471-485. DOI: 10.1016/j.jfineco.2014.11.006.

    CrossRef Google Scholar

    [19] K. Hlavácková-Schindler, Equivalence of granger causality and transfer entropy: A generalization, Applied Mathematical Sciences, 2011, 5(73), 3637-3648. DOI: https://www.researchgate.net/publication/233965869.

    Google Scholar

    [20] Z. Jing, Z. Liu, L. Qi and X. Zhang, Spillover effects of banking systemic risk on firms in china: A financial cycle analysis, International Review of Financial Analysis, 2022, 82, 102171. doi: 10.1016/j.irfa.2022.102171

    CrossRef Google Scholar

    [21] A. Karlekar, A. Seal, O. Krejcar and C. Gonzalo-Martin, Fuzzy k-means using non-linear s-distance, IEEE Access, 2019, 7, 55121-55131. DOI: 10.1109/ACCESS.2019.2910195.

    CrossRef Google Scholar

    [22] G. G. Kaufman and K. E. Scott, What is systemic risk, and do bank regulators retard or contribute to it?, The independent review, 2003, 7(3), 371-391. DOI: http://www.jstor.org/stable/24562449.

    Google Scholar

    [23] Y. Kim, J. Kim and S.-H. Yook, Information transfer network of global market indices, Physica A: Statistical Mechanics and its Applications, 2015, 430, 39-45. DOI: 10.1016/j.physa.2015.02.081.

    CrossRef Google Scholar

    [24] J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the nelder-mead simplex method in low dimensions, SIAM Journal on optimization, 1998, 9(1), 112-147. DOI: 10.1137/S1052623496303470.

    CrossRef Google Scholar

    [25] J. D. Murray, Mathematical Biology: I. An Introduction, Springer, 2002. DOI: https://doi.org/10.1007/978-0-387-22437-4.

    Google Scholar

    [26] J. D. Murray, Reaction diffusion, chemotaxis, and nonlocal mechanisms, Mathematical Biology: I. An Introduction, 2002, 395-417. DOI: 10.1007/978-0-387-22437-4.

    CrossRef Google Scholar

    [27] M. S. Murugan, et al., Large-scale data-driven financial risk management & analysis using machine learning strategies, Measurement: Sensors, 2023, 27, 100756. DOI: 10.1016/j.measen.2023.100756.

    CrossRef Google Scholar

    [28] I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing, 2011, 33(5), 2295-2317. DOI: 10.1137/090752286.

    CrossRef Google Scholar

    [29] L. Riccetti, Systemic risk analysis and sifis detection: A proposal for a complete methodology, Available at SSRN 3415730, 2019. DOI: 10.2139/ssrn.3415730.

    Google Scholar

    [30] M. S. Risk and R. F. Soundness, Global financial stability report, International Monetary Fund, Washington, 2008.

    Google Scholar

    [31] T. Schreiber, Measuring information transfer, Physical review letters, 2000, 85(2), 461. DOI: 10.1103/PhysRevLett.85.461.

    CrossRef Google Scholar

    [32] F. Sekmen and M. Kurkcu, An early warning system for turkey: the forecasting of economic crisis by using the artificial neural networks, Asian Economic and Financial Review, 2014, 4(4), 529-543. DOI: https://archive.aessweb.com/index.php/5002/article/view/1176.

    Google Scholar

    [33] K. K. Sharma and A. Seal, Spectral embedded generalized mean based k-nearest neighbors clustering with s-distance, Expert Systems with Applications, 2021, 169, 114326. DOI: 10.1016/j.eswa.2020.114326.

    CrossRef Google Scholar

    [34] J. Shi, C. Wang, H. Wang and X. Yan, Diffusive spatial movement with memory, Journal of Dynamics and Differential Equations, 2020, 32, 979-1002. DOI: 10.1007/s10884-019-09757-y.

    CrossRef Google Scholar

    [35] T. C. Silva, M. A. da Silva and B. M. Tabak, Systemic risk in financial systems: a feedback approach, Journal of Economic Behavior & Organization, 2017, 144, 97-120. DOI: 10.1016/j.jebo.2017.09.013.

    CrossRef Google Scholar

    [36] H. Smaoui, K. Mimouni, H. Miniaoui and A. Temimi, Funding liquidity risk and banks' risk-taking: Evidence from islamic and conventional banks, Pacific-Basin Finance Journal, 2020, 64, 101436. doi: 10.1016/j.pacfin.2020.101436

    CrossRef Google Scholar

    [37] P. Song and Y. Xiao, Estimating time-varying reproduction number by deep learning techniques, J. Appl. Anal. Comput., 2022, 12(3), 1077-1089. DOI: 10.11948/20220136.

    CrossRef Google Scholar

    [38] J. Suss and H. Treitel, Predicting Bank Distress in the UK with Machine Learning, 2019. DOI: 10.2139/ssrn.3465753.

    Google Scholar

    [39] A. Tobias and M. K. Brunnermeier, Covar, The American Economic Review, 2016, 106(7), 1705-1741. DOI: 10.1257/aer.20120555.

    CrossRef Google Scholar

    [40] E. Tölö, Predicting systemic financial crises with recurrent neural networks, Journal of Financial Stability, 2020, 49, 100746. DOI: 10.1016/j.jfs.2020.100746.

    CrossRef Google Scholar

    [41] G.-J. Wang and C.-L. Zhu, BP-CVAR: A novel model of estimating cvar with back propagation algorithm, Economics Letters, 2021, 209, 110-125. DOI: 10.1016/j.econlet.2021.110125.

    CrossRef Google Scholar

    [42] H. Wang, F. Wang and K. Xu, Modeling information diffusion in online social networks with partial differential equations, 7, 2020. DOI: 10.48550/arXiv.1310.0505.

    Google Scholar

    [43] L. Wang, S. Li and T. Chen, Investor behavior, information disclosure strategy and counterparty credit risk contagion, Chaos, Solitons & Fractals, 2019, 119, 37-49. DOI: 10.1016/j.chaos.2018.12.007.

    CrossRef Google Scholar

    [44] Y. Wang and H. Wang, Using networks and partial differential equations to forecast bitcoin price movement, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(7), 073127. DOI: 10.1063/5.0002759.

    CrossRef Google Scholar

    [45] Y. Wang, H. Wang, S. Chang and A. Avram, Prediction of daily pm 2.5 concentration in china using partial differential equations, PloS one, 2018, 13(6), e0197666. DOI: 10.1371/journal.pone.0197666.

    CrossRef Google Scholar

    [46] Y. Wang, H. Wang and S. Zhang, Quantifying prediction and intervention measures for PM2.5 by a PDE model, Journal of Cleaner Production, 2020, 268, 122-131. DOI: 10.1016/j.jclepro.2020.122131.

    CrossRef Google Scholar

    [47] L. Yang, T. Gao, Y. Lu, et al., Neural network stochastic differential equation models with applications to financial data forecasting, Applied Mathematical Modelling, 2023, 115, 279-299. DOI: 10.1016/j.apm.2022.11.001.

    CrossRef Google Scholar

    [48] W. Zhang, X. Zhuang, J. Wang and Y. Lu, Connectedness and systemic risk spillovers analysis of chinese sectors based on tail risk network, The North American Journal of Economics and Finance, 2020, 54, 101248. DOI: 10.1016/j.najef.2020.101248.

    CrossRef Google Scholar

Figures(14)  /  Tables(5)

Article Metrics

Article views(1666) PDF downloads(337) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint