2024 Volume 14 Issue 1
Article Contents

M. Younis, H. Ahmad, W. Shahid. BEST PROXIMITY POINTS FOR MULTIVALUED MAPPINGS AND EQUATION OF MOTION[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 298-316. doi: 10.11948/20230213
Citation: M. Younis, H. Ahmad, W. Shahid. BEST PROXIMITY POINTS FOR MULTIVALUED MAPPINGS AND EQUATION OF MOTION[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 298-316. doi: 10.11948/20230213

BEST PROXIMITY POINTS FOR MULTIVALUED MAPPINGS AND EQUATION OF MOTION

  • In this manuscript, we compute coincidence point, best proximity point, and fixed point results for multivalued proximal contractions in the setup of $ b-$metric spaces using an alternating distance function. Moreover, we show the corresponding results for single-valued mappings can also be obtained using generalized proximal contractions. To validate our study, examples are given for both multivalued and single-valued mappings that strengthen our main results based on coincidence points. In the end, we apply the obtained result to show the existence of the solution of a particular type of second-order boundary value problem describing the equation of motion.

    MSC: 54E05, 70E17, 4G10
  • 加载中
  • [1] A. Abkar and M. Gabeleh, Best proximity points for asymptotic cyclic contraction mappings, Nonlinear Anal., 2011, 74, 7261–7268. doi: 10.1016/j.na.2011.07.043

    CrossRef Google Scholar

    [2] H. Ahmad, M. Younis and M. E. Köksal, Double controlled partial metric type spaces and convergence results, Journal of Mathematics, 2021.

    Google Scholar

    [3] J. Anuradha and P. Veeramani, Proximal pointwise contraction, Topol. Appl., 2009, 156(18), 2942–2948. doi: 10.1016/j.topol.2009.01.017

    CrossRef Google Scholar

    [4] I. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funk. An. Ulianowsk Gos. Ped. Inst., 1989, 30, 26–37.

    Google Scholar

    [5] S. Basha, Best proximity points for global optimal approximate solutions, J. Global Optim., (2011), 49, 15–21. doi: 10.1007/s10898-009-9521-0

    CrossRef Google Scholar

    [6] S. Basha and N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl., 2012, 42.

    Google Scholar

    [7] S. Basha and P. Veeramani, Best approximations and best proximity pairs, Acta. Sci. Math. (Szeged), 1997, 63, 289–300.

    Google Scholar

    [8] S. Basha and P. Veeramani, Best proximity pair theorems for multi-functions with open fibres, J. Approx. Theory, (2000), 103, 119–129. doi: 10.1006/jath.1999.3415

    CrossRef Google Scholar

    [9] L. Chen, X. Liu and Y. Zhao, Exponential stability of a class of nonlinear systems via fixed point theory, Nonlinear Analysis, 196, (2021), 111784.

    Google Scholar

    [10] L. Chen, N. Yang and Y. Zhao, Fixed point theorems for the Mann's iteration scheme in convex graphical rectangular $b$-metric spaces, Optimization, 2022, 70(5–6), 1359–1373.

    $b$-metric spaces" target="_blank">Google Scholar

    [11] S. Czerwik, Contraction mappings in $\mathrm{s}$-metric spaces, Acta. Math. Univ. Ostrav., 1993, 1, 5–11.

    $\mathrm{s}$-metric spaces" target="_blank">Google Scholar

    [12] A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 2006, 323, 1001–1006. doi: 10.1016/j.jmaa.2005.10.081

    CrossRef Google Scholar

    [13] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Mathematische zeitschrift, 1969, 112(3), 234–240. doi: 10.1007/BF01110225

    CrossRef Google Scholar

    [14] M. M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, 1906, 22, 1–72. doi: 10.1007/BF03018603

    CrossRef Google Scholar

    [15] M. Gabeleh, J. Markin and M. De La Sen, Some comments on best proximity points for ordered proximal contractions, Journal of Applied Analysis Computation, 2022, 12(4), 1434–1442. doi: 10.11948/20210266

    CrossRef Google Scholar

    [16] M. Jleli, E. Karapinar and B. Samet, Best proximity points for generalized $\alpha -\psi -$proximal contractive type mappings, J. Appl. Math., 2013, 2013.

    $\alpha -\psi -$proximal contractive type mappings" target="_blank">Google Scholar

    [17] M. Jovanovic, Z. Kadelburg and S. Radenovic, Common fixed point results in metric-type spaces, Fixed Point Theory and Applications, 2010, 1–15.

    Google Scholar

    [18] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30(1), 1–9. doi: 10.1017/S0004972700001659

    CrossRef Google Scholar

    [19] M. Kikkawa and T. Suzuki, Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl., 2008, Article ID 649749.

    Google Scholar

    [20] S. Komal, A. Hussain, N. Sultana and P. Kumam, Coincidence best proximity points for Geraghty type proximal cyclic contractions, Journal of Mathematics and Computer Science, 2018, 18, 98–114. doi: 10.22436/jmcs.018.01.11

    CrossRef Google Scholar

    [21] A. Latif, M. Abbas and A. Hussain, Coincidence best proximity point of $\digamma _{\mathrm{\mathfrak{g}}}-$weak contractive mappings in partially ordered metric space, J. Nonlinear Sci. Appl., 2016, 9, 2448–2457. doi: 10.22436/jnsa.009.05.44

    CrossRef $\digamma _{\mathrm{\mathfrak{g}}}-$weak contractive mappings in partially ordered metric space" target="_blank">Google Scholar

    [22] S. Radenovic, H. Aydi, H. Lakzian and Z. D. Mitrovic, Best proximity points of MT-cyclic contractions with property UC, Numerical Functional Analysis and Optimization, 2020, 41(7), 871–882. doi: 10.1080/01630563.2019.1708390

    CrossRef Google Scholar

    [23] S. Radenovic, A. Kostic and V. Rakocevic, Best proximity points involving simulation functions with $w_0$-distance, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A. Matematicas RACSAM, 2023, 113(2), 715–727.

    $w_0$-distance" target="_blank">Google Scholar

    [24] T. R. Rockafellar and R. J. V. Wets, Variational Analysis, Springer Berlin, Germany, 2005, 117, ISBN 3-540-62772-3.

    Google Scholar

    [25] N. Saleem, H. Ahmad, H. Aydi and Y. U. Gaba, On some coincidence best proximity point results, Journal of Mathematics, 2021, 2021, Article ID 8005469, 19 pp.

    Google Scholar

    [26] B. Sametric, C. Vetro and P. Vetro, Fixed point theorem for $\alpha -\psi -$contractive type mappings, Nonlinear Anal., 2012, 75, 2154–2165. doi: 10.1016/j.na.2011.10.014

    CrossRef $\alpha -\psi -$contractive type mappings" target="_blank">Google Scholar

    [27] V. Sankar Raj, A Best Proximity Point Theorem for Weakly Contractive Non-Self-Mappings, Nonlinear Analysis, 2011, 4804–4808.

    Google Scholar

    [28] T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal., 2009, 71, 2918–2926. doi: 10.1016/j.na.2009.01.173

    CrossRef Google Scholar

    [29] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed point theory and applications, 2012(1), 1–6.

    Google Scholar

    [30] M. Younis and D. Bahuguna, A unique approach to graph-based metric spaces with an application to rocket ascension, Comp. Appl. Math., 2023, 42, 44. doi: 10.1007/s40314-023-02193-1

    CrossRef Google Scholar

    [31] M. Younis and F. Nicola, Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences, VojnotehniÄmki Glasnik, 2021, 69(1), 8–30. doi: 10.5937/vojtehg69-29517

    CrossRef Google Scholar

    [32] M. Younis, A. Sretenovic and S. Radenovic, Some critical remarks on "Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations", Nonlinear Analysis: Modelling and Control, 2022, 27(1), 163–178. doi: 10.15388/namc.2022.27.25193

    CrossRef Google Scholar

Article Metrics

Article views(1557) PDF downloads(761) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint