2024 Volume 14 Issue 1
Article Contents

Zohreh Eskandari, Parvaiz Ahmad Naik, Mehmet Yavuz. DYNAMICAL BEHAVIORS OF A DISCRETE-TIME PREY-PREDATOR MODEL WITH HARVESTING EFFECT ON THE PREDATOR[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 283-297. doi: 10.11948/20230212
Citation: Zohreh Eskandari, Parvaiz Ahmad Naik, Mehmet Yavuz. DYNAMICAL BEHAVIORS OF A DISCRETE-TIME PREY-PREDATOR MODEL WITH HARVESTING EFFECT ON THE PREDATOR[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 283-297. doi: 10.11948/20230212

DYNAMICAL BEHAVIORS OF A DISCRETE-TIME PREY-PREDATOR MODEL WITH HARVESTING EFFECT ON THE PREDATOR

  • This study investigates the dynamics of a discrete-time prey-predator model with a harvesting effect on the predator. During the analysis of the bifurcations at the interior fixed point, we find that there are some generic bifurcations, including fold, flip, Neimark-Sacker, and strong resonance bifurcations. Using the normal form theory and the center manifold theorem, we can characterize these bifurcations. Furthermore, we determine the non-degeneracy conditions for the computed bifurcations and compute the critical normal form coefficients. Our analysis of the obtained analytical results as well as the revealing of more complex dynamical behaviors that cannot be achieved analytically is carried out using the numerical continuation method by computing several bifurcation curves emanating from the detected bifurcation points.

    MSC: 37G35, 39A30, 39A33, 91B76, 92B05, 92D25
  • 加载中
  • [1] S. Chakraborty, S. Pal and N. Bairagi, Predator-prey interaction with harvesting: Mathematical study with biological ramifications, Applied Mathematical Modelling, 2012, 36(9), 4044–4059. doi: 10.1016/j.apm.2011.11.029

    CrossRef Google Scholar

    [2] Z. Eskandari, J. Alidousti, Z. Avazzadeh and J. T. Machado, Dynamics and bifurcations of a discrete-time prey-predator model with Allee effect on the prey population, Ecological Complexity, 2021, 48, 100962. doi: 10.1016/j.ecocom.2021.100962

    CrossRef Google Scholar

    [3] Z. Eskandari, Z. Avazzadeh and R. K. Ghaziani, Theoretical and numerical bifurcation analysis of a predator-prey system with ratio-dependence, Mathematical Sciences, 2023, 18, 1–12.

    Google Scholar

    [4] Z. Eskandari, Z. Avazzadeh, R. K. Ghaziani and B. Li, Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method, Mathematical Methods in the Applied Sciences, 2022, 46(7), 7045–7059.

    Google Scholar

    [5] Z. Eskandari, R. K. Ghaziani and Z. Avazzadeh, Bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals, International Journal of Biomathematics, 2023, 16(6), 2250120. doi: 10.1142/S1793524522501200

    CrossRef Google Scholar

    [6] M. Farman, M. F. Tabassum, P. A. Naik and S. Akram, Numerical treatment of a nonlinear dynamical hepatitis B model: An evolutionary approach, The European Physical Journal Plus, 2020, 135 (12), 941. doi: 10.1140/epjp/s13360-020-00902-x

    CrossRef Google Scholar

    [7] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker Incorporated, 57, 1980.

    Google Scholar

    [8] X. Gao, S. Ishag, S. Fu, W. Li and W. Wang, Bifurcation and turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting, Nonlinear Analysis: Real World Applications, 2020, 51, 102962. doi: 10.1016/j.nonrwa.2019.102962

    CrossRef Google Scholar

    [9] M. Gholami, R. K. Ghaziani and Z. Eskandari, Three-dimensional fractional system with the stability condition and chaos control, Mathematical Modeling and Numerical Simulation with Applications, 2022, 2(1), 41–47. doi: 10.53391/mmnsa.2022.01.004

    CrossRef Google Scholar

    [10] M. B. Ghori, Y. Kang Y. Chen, Emergence of stochastic resonance in a two-compartment hippocampal pyramidal neuron model, Journal of Computational Neuroscience, 2022, 50(2), 217–240. doi: 10.1007/s10827-021-00808-2

    CrossRef Google Scholar

    [11] M. B. Ghori, P. A. Naik, J. Zu, Z. Eskandari and M. Naik, Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate, Mathematical Methods in the Applied Sciences, 2022, 45(7), 3665–3688. doi: 10.1002/mma.8010

    CrossRef Google Scholar

    [12] W. Govaerts, R. K. Ghaziani, Y. A. Kuznetsov and H. G. Meijer, Numerical methods for two-parameter local bifurcation analysis of maps, SIAM Journal on Scientific Computing, 2007, 29(6), 2644–2667. doi: 10.1137/060653858

    CrossRef Google Scholar

    [13] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer Science & Business Media, 42, 2013.

    Google Scholar

    [14] Z. He and X. Lai, Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Analysis: Real World Applications, 2011, 12(1), 403–417. doi: 10.1016/j.nonrwa.2010.06.026

    CrossRef Google Scholar

    [15] C. M. Heggerud and K. Lan, Local stability analysis of ratio-dependent predator-prey models with predator harvesting rates, Applied Mathematics and Computation, 2015, 270, 349–357. doi: 10.1016/j.amc.2015.08.062

    CrossRef Google Scholar

    [16] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, The Memoirs of the Entomological Society of Canada, 1965, 97(S45), 5–60. doi: 10.4039/entm9745fv

    CrossRef Google Scholar

    [17] S. R. J. Jang, Allee effects in a discrete-time host-parasitoid model, Journal of Difference Equations and Applications, 2006, 12(2), 165–181. doi: 10.1080/10236190500539238

    CrossRef Google Scholar

    [18] S. R. J. Jang, Discrete-time host-parasitoid models with Allee effects: Density dependence versus parasitism, Journal of Difference Equations and Applications, 2011, 17(04), 525–539. doi: 10.1080/10236190903146920

    CrossRef Google Scholar

    [19] H. Joshi, M. Yavuz and I. Stamova, Analysis of the disturbance effect in intracellular calcium dynamic on fibroblast cells with an exponential kernel law, Bulletin of Biomathematics, 2023, 1(1), 24–39.

    Google Scholar

    [20] L. E. Keshet, Mathematical models in biology, SIAM, 2005, 1–586.

    Google Scholar

    [21] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer Science & Business Media, 112, 2013.

    Google Scholar

    [22] Y. A. Kuznetsov and H. G. Meijer, Numerical normal forms for codim 2 bifurcations of fixed points with at most two critical eigenvalues, SIAM Journal on Scientific Computing, 2005, 26(6), 1932–1954. doi: 10.1137/030601508

    CrossRef Google Scholar

    [23] Y. A. Kuznetsov and H. G. Meijer, Numerical Bifurcation Analysis of Maps: From Theory to Software, Cambridge University Press, 2019.

    Google Scholar

    [24] X. Liu and D. Xiao, Bifurcations in a discrete time Lotka-Volterra predator-prey system, Discrete and Continuous Dynamical Systems-B, 2006, 6(3), 559–572. doi: 10.3934/dcdsb.2006.6.559

    CrossRef Google Scholar

    [25] G. Livadiotis, L. Assas, B. Dennis, S. Elaydi and E. Kwessi, A discrete-time host-parasitoid model with an Allee effect, Journal of Biological Dynamics, 2015, 9(1), 34–51. doi: 10.1080/17513758.2014.982219

    CrossRef Google Scholar

    [26] A. J. Lotka, Elements of physical biology, Nature, 1925, 116, 461.

    Google Scholar

    [27] V. Madhusudanan, K. Anitha, S. Vijaya and M. Gunasekaran, Complex effects in discrete time prey-predator model with harvesting on prey, The International Journal of Engineering and Science, 2014, 3(4), 1–5.

    Google Scholar

    [28] P. A. Naik and Z. Eskandari, Nonlinear dynamics of a three-dimensional discrete-time delay neural network, International Journal of Biomathematics, 2024, 17(4), 2350057.

    Google Scholar

    [29] P. A. Naik, Z. Eskandari, Z. Avazzadeh and J. Zu, Multiple bifurcations of a discrete-time prey-predator model with mixed functional response, International Journal of Bifurcation and Chaos, 2022, 32(04), 2250050. doi: 10.1142/S021812742250050X

    CrossRef Google Scholar

    [30] P. A. Naik, Z. Eskandari, A. Madzvamuse, Z. Avazzadeh and J. Zu, Complex dynamics of a discrete-time seasonally forced SIR epidemic model, Mathematical Methods in the Applied Sciences, 2023, 46(6), 7045–7059. doi: 10.1002/mma.8955

    CrossRef Google Scholar

    [31] P. A. Naik, Z. Eskandari and H. E. Shahraki, Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model, Mathematical Modelling and Numerical Simulation with Applications, 2021, 1(2), 95–101. doi: 10.53391/mmnsa.2021.01.009

    CrossRef Google Scholar

    [32] P. A. Naik, Z. Eskandari, H. E. Shahraki and K. M. Owolabi, Bifurcation analysis of a discrete-time prey-predator model, Bulletin of Biomathematics, 2023, 1(2), 111–123.

    Google Scholar

    [33] P. A. Naik, Z. Eskandari, M. Yavuz and J. Zu, Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect, Journal of Computational and Applied Mathematics, 2022, 413, 114401. doi: 10.1016/j.cam.2022.114401

    CrossRef Google Scholar

    [34] P. A. Naik and K. R. Pardasani, Three dimensional finite element model to study calcium distribution in oocytes, Network Modeling Analysis in Health Informatics and Bioinformatics, 2017, 6, 16. doi: 10.1007/s13721-017-0158-5

    CrossRef Google Scholar

    [35] S. Noeiaghdam, M. Suleman and H. Budak, Solving a modified nonlinear epidemiological model of computer viruses by homotopy analysis method, Mathematical Sciences, 2018, 12, 211–222. doi: 10.1007/s40096-018-0261-5

    CrossRef Google Scholar

    [36] K. M. Owolabi, B. Karaagac and D. Baleanu, Pattern formation in superdiffusion predator-prey-like problems with integer- and noninteger-order derivatives, Mathematical Methods in the Applied Sciences, 2021, 44(5), 4018–4036. doi: 10.1002/mma.7007

    CrossRef Google Scholar

    [37] K. M. Owolabi, E. Pindza and A. Atangana, Analysis and pattern formation scenarios in the superdiffusive system of predation described with Caputo operator, Chaos Solitons & Fractals, 2021, 152(399), 111468.

    Google Scholar

    [38] A. K. G. Ozlem and M. Feckan, Stability, neimark-sacker bifurcation and chaos control for a prey-predator system with harvesting effect on predator, Miskolc Mathematical Notes, 2021, 22(2), 663–679. doi: 10.18514/MMN.2021.3450

    CrossRef Google Scholar

    [39] N. Sene, Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov exponents, Journal of King Saud University-Science, 2021, 33(1), 101275. doi: 10.1016/j.jksus.2020.101275

    CrossRef Google Scholar

    [40] N. Sene, On the modeling and numerical discretizations of a chaotic system via fractional operators with and without singular kernels, Mathematical Sciences, 2023, 17, 517–537. doi: 10.1007/s40096-022-00478-w

    CrossRef Google Scholar

    [41] N. Sene, Second-grade fluid with Newtonian heating under Caputo fractional derivative: analytical investigations via Laplace transforms, Mathematical Modeling and Numerical Simulation with Applications, 2022, 2(1), 13–25. doi: 10.53391/mmnsa.2022.01.002

    CrossRef Google Scholar

    [42] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 1926, 118, 558–560. doi: 10.1038/118558a0

    CrossRef Google Scholar

    [43] W. X. Wang, Y. B. Zhang and C. Z. Liu, Analysis of a discrete-time predator-prey system with Allee effect, Ecological Complexity, 2011, 8(1), 81–85. doi: 10.1016/j.ecocom.2010.04.005

    CrossRef Google Scholar

    [44] M. Yavuz and N. Sene, Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fractal and Fractional, 2020, 4, 35. doi: 10.3390/fractalfract4030035

    CrossRef Google Scholar

    [45] L. G. Yuan and Q. G. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system, Applied Mathematical Modelling, 2015, 39(8), 2345–2362. doi: 10.1016/j.apm.2014.10.040

    CrossRef Google Scholar

    [46] M. Zhao, C. Li and J. Wang, Complex dynamic behaviors of a discrete-time predator-prey system, Journal of Applied Analysis and Computation, 2017, 7(2), 478–500. doi: 10.11948/2017030

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(1753) PDF downloads(1212) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint