Citation: | Feng Liu, Zunwei Fu, Yan Wu. VARIATION OPERATORS FOR COMMUTATORS OF ROUGH SINGULAR INTEGRALS ON WEIGHTED MORREY SPACES[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 263-282. doi: 10.11948/20230210 |
In this paper, we establish the boundedness and compactness the variation operators of commutators of singular integrals with rough kennels $\Omega\in L^q({\rm S}^{n-1})$ for some $q\in(1, \infty]$ on the weighted Lebesgue and Morrey spaces. Our main results represent significant improvements as well as natural extensions of what was known previously.
[1] | J. Bourgain, Pointwise ergodic theorems for arithmetric sets, Inst. Hautes Études Sci. Publ. Math., 1989, 69(1), 5–45. doi: 10.1007/BF02698838 |
[2] | R. Bu, Z. W. Fu and Y. D. Zhang, Weighted estimates for bilinear square function with non-smooth kernels and commutators, Front. Math. China, 2020, 15, 1–20. doi: 10.1007/s11464-020-0822-4 |
[3] | J. T. Campbell, R. L. Jones, K. Reinhdd and M. Wierdl, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 2003, 355, 2115–2137. |
[4] | P. Chen, X. T. Duong, J. Li and Q. Y. Wu, Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal., 2019, 277, 1639–1676. doi: 10.1016/j.jfa.2019.05.008 |
[5] | Y. Chen, Y. Ding, G. Hong and H. Liu, Weighted jump and variational inequalities for rough operators, J. Funct. Anal., 2018, 274, 2446–2475. doi: 10.1016/j.jfa.2018.01.009 |
[6] | Y. Chen, Y. Ding, G. Hong and H. Liu, Variational inequalities for the commutators of rough operators with BMO functions, Sci. China Math., 2021, 64, 2437–2460. doi: 10.1007/s11425-019-1713-x |
[7] | Y. Chen, Y. Ding and X. Wang, Compactness of commutators for singular integrals on Morrey spaces, Canad. J. Math., 2012, 64(2), 257–281. doi: 10.4153/CJM-2011-043-1 |
[8] | Y. Ding, G. Hong and H. Liu, Jump and variational inequalities for rough operators, J. Fourier Anal. Appl., 2017, 23, 679–711. doi: 10.1007/s00041-016-9484-8 |
[9] |
Y. Ding and C. C. Lin, $L^p$ boundedness of some rough operators with different weights, J. Math. Soc. Japan, 2003, 55, 209–230.
$L^p$ boundedness of some rough operators with different weights" target="_blank">Google Scholar |
[10] |
X. T. Duong, M. Lacey, J. Li, B. D. Wick and Q. Y. Wu, Commutators of Cauchy-Szego type integrals for domains in $C_n$ with minimal smoothness, Indiana U. Math. J., 2021, 70, 1505–1541. doi: 10.1512/iumj.2021.70.8573
CrossRef $C_n$ with minimal smoothness" target="_blank">Google Scholar |
[11] | Z. W. Fu, S. L. Gong, S. Z. Lu and W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 2015, 27, 2825–2852. doi: 10.1515/forum-2013-0064 |
[12] | Z. W. Fu, R. M. Gong, E. Pozzi and Q. Y. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 2023, 296(5), 1859–1885. doi: 10.1002/mana.202000139 |
[13] | Z. W. Fu, L. Grafakos, Y. Lin, Y. Wu and S. H. Yang, Riesz transform associated with the fractional Fourier transform and applications in image edge detection, Appl. Comput. Harmon. A, 2023, 66, 211–235. doi: 10.1016/j.acha.2023.05.003 |
[14] | Z. W. Fu, X. M. Hou, M. Y. Lee and J. Li, A study of one-sided singular integral and function space via reproducing formula, J. Geom. Anal., 2023, 33. DOI: 10.1007/s12220-023-01340-8. |
[15] | R. M. Gong, M. N. Vempati, Q. Y. Wu and P. Z. Xie, Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces, J. Aust. Math. Soc., 2022, 113(1), 36–56. doi: 10.1017/S1446788722000015 |
[16] | Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 2009, 282(2), 219–231. doi: 10.1002/mana.200610733 |
[17] | S. G. Krantz and S. Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications. II, J. Math. Anal. Appl., 2001, 258(2), 642–657. doi: 10.1006/jmaa.2000.7403 |
[18] | D. Lépingle, La variation d'ordre p des semi-martingales, Z. Wahrsch. Verw. Gebiete., 1976, 36, 295–316. doi: 10.1007/BF00532696 |
[19] | F. Liu and P. Cui, Variation operators for singular integrals and their commutators on weighted Morrey spaces and Sobolev spaces, Sci. China Math., 2022, 65(6), 1267–1292. doi: 10.1007/s11425-020-1828-6 |
[20] | F. Liu, Z. W. Fu and S. T. Jhang, Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces, Front. Math. China, 2019, 14, 95–122. doi: 10.1007/s11464-019-0742-3 |
[21] | S. Lu, Y. Ding and D. Yan, Singular Integral and Related Topics, World Scientific Publishing, Singapore, 2007. |
[22] | T. Ma, J. Torrea and Q. Xu, Weighted variation inequalities for differential operators and singular integrals in higher dimensions, Sci. China Math., 2017, 268(8), 1–24. |
[23] |
G. Pisier and Q. Xu, The strong $p$-variation of martingales and orthogonal series, Probab. Theory Related Fields, 1988, 77(4), 497–514. doi: 10.1007/BF00959613
CrossRef $p$-variation of martingales and orthogonal series" target="_blank">Google Scholar |
[24] | J. M. Ruan, Q. Y. Wu and D. S. Fan, Weighted Moes for Hausdorff operator and its commutator on the Heisenberg group, Math. Inequal. Appl., 2019, 22(1), 307–329. |
[25] | S. G. Shi, Z. W. Fu and S. Z. Lu, On the compactness of commutators of Hardy operators, Pacific J. Math., 2020, 307, 239–256. doi: 10.2140/pjm.2020.307.239 |
[26] | S. G. Shi and S. Z. Lu, A characterization of Campanato space via commutator of fractional integral, J. Math. Anal. Appl., 2014, 419, 123–137. doi: 10.1016/j.jmaa.2014.04.040 |
[27] | Q. Y. Wu and Z. W. Fu, Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces, Bull. Malays. Math. Sci. Soc., 2017, 40, 635–654. doi: 10.1007/s40840-017-0444-5 |
[28] | M. H. Yang, Z. W. Fu and J. Y. Sun, Existence and large time behavior to coupled chemotaxis-fluid equations in Besov–Morrey spaces, J. Differ. Equations, 2019, 266, 5867–5894. doi: 10.1016/j.jde.2018.10.050 |
[29] | K. Yosida, Functional Analysis, Reprint of the sixth (1980) edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. |
[30] | X. Zhang, F. Liu and H. Zhang, Variation inequalities for rough singular integrals and their commutators on Morrey spaces and Besov spaces, Adv. Nonlinear Anal., 2022, 11, 72–95. |