2024 Volume 14 Issue 1
Article Contents

H. Dehestani, Y. Ordokhani, M. Razzaghi. EXECUTION OF A NOVEL DISCRETIZATION APPROACH FOR SOLVING VARIABLE-ORDER CAPUTO-RIESZ TIME-SPACE FRACTIONAL SCHRÖDINGER EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 235-262. doi: 10.11948/20230194
Citation: H. Dehestani, Y. Ordokhani, M. Razzaghi. EXECUTION OF A NOVEL DISCRETIZATION APPROACH FOR SOLVING VARIABLE-ORDER CAPUTO-RIESZ TIME-SPACE FRACTIONAL SCHRÖDINGER EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 235-262. doi: 10.11948/20230194

EXECUTION OF A NOVEL DISCRETIZATION APPROACH FOR SOLVING VARIABLE-ORDER CAPUTO-RIESZ TIME-SPACE FRACTIONAL SCHRÖDINGER EQUATIONS

  • This work deals with the variable-order Caputo-Riesz (VO-CR) time-space fractional Schrödinger equations with the help of the Pell discretization method. For the first step, we separate the proposed problem into real and imaginary parts. Then, expanding the functions with respect to Pell polynomials and utilizing the required operational matrices. The operational matrices, together with the Pell discretization method, reduce the problem into a system of algebraic equations. It should be noted that the technique of obtaining the operational matrices strongly affects the precision of the numerical method process. Finally, we implement the proposed approach in several numerical experiments to confirm the theoretical scheme. And also, the comparison of obtained results with some existing methods is displayed in tables.

    MSC: 35R11, 65M70
  • 加载中
  • [1] J. B. Anderson, A random-walk simulation of the Schrodinger equation: $H^{+}_{3}$, J. Chem. Phys., 1975, 63(4), 1499–1503. doi: 10.1063/1.431514

    CrossRef $H^{+}_{3}$" target="_blank">Google Scholar

    [2] A. Babaei, B. P. Moghaddam, S. Banihashemi and J. A. T. Machado, Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations, Commun. Nonlinear Sci. Numer. Simul., 2020, 82, 104985. doi: 10.1016/j.cnsns.2019.104985

    CrossRef Google Scholar

    [3] A. H. Bhrawy, J. F. Alzaidy, M. A. Abdelkawy and A. Biswas, Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrodinger equations, Nonlinear Dyn., 84(3), 2016, 1553–1567. doi: 10.1007/s11071-015-2588-x

    CrossRef Google Scholar

    [4] A. H. Bhrawy and M. A. Zaky, Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations, Comput. Math. Appl., 2017, 73(6), 1100–1117. doi: 10.1016/j.camwa.2016.11.019

    CrossRef Google Scholar

    [5] S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations, Ann. Inst. Henri Poincare, Anal. Non Lineaire, 2011, 28(3), 413–441. doi: 10.1016/j.anihpc.2011.02.006

    CrossRef Google Scholar

    [6] C. F. M. Coimbra, Mechanics with variable-order differential operators, Annals of Physics, 2003, 12,692–703. doi: 10.1002/andp.200351511-1203

    CrossRef Google Scholar

    [7] H. Dehestani and Y. Ordokhani, An efficient approach based on Legendre–Gauss–Lobatto quadrature and discrete shifted Hahn polynomials for solving Caputo–Fabrizio fractional Volterra partial integro-differential equations, J. Comput. Appl. Math., 2022,403, 113851. doi: 10.1016/j.cam.2021.113851

    CrossRef Google Scholar

    [8] H. Dehestani, and Y. Ordokhani, A spectral framework for the solution of fractional optimal control and variational problems involving Mittag–Leffler nonsingular kernel, J. Vib. Control, 2020, 1077546320974815.

    Google Scholar

    [9] H. Dehestani, Y. Ordokhani and M. Razzaghi, An improved numerical technique for distributed‐order time‐fractional diffusion equations, Numer. Methods Partial Differ. Equ., 2021, 37(3), 2490–2510. doi: 10.1002/num.22731

    CrossRef Google Scholar

    [10] H. Dehestani, Y. Ordokhani and M. Razzaghi, Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations, Appl. Math. Comput., 2018,336,433–453,

    Google Scholar

    [11] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.

    Google Scholar

    [12] B. K. Ghimire, X. Li, C. S. Chen and A. R. Lamichhane, Hybrid Chebyshev polynomial scheme for solving elliptic partial differential equations, J. Comput. Appl. Math., 2020,364, 112324. doi: 10.1016/j.cam.2019.06.040

    CrossRef Google Scholar

    [13] M. H. Heydari and A. Atangana, A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative, Chaos, Solitons & Fractals, 2019,128,339–348.

    Google Scholar

    [14] M. H. Heydari and M. Razzaghi, Jacobi spectral method for variable-order fractional Benney–Lin equation arising in falling film problems, J. Comput. Appl. Math., 2022,402, 113813. doi: 10.1016/j.cam.2021.113813

    CrossRef Google Scholar

    [15] B. Hicdurmaz, Finite difference schemes for time-fractional Schrödinger equations via fractional linear multistep method, Int. J. Comput. Math., 2021, 98(8), 1561–1573. doi: 10.1080/00207160.2020.1834088

    CrossRef Google Scholar

    [16] A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas Polynomials, The Fibonacci Quarterly, 1985, 23(1), 7–20.

    Google Scholar

    [17] L. Hormander, The Analysis of Linear Partial Differential Operators, Springer, Berlin, 1990.

    Google Scholar

    [18] M. M. Khader and K. Saad, A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method, Chaos, Solitons & Fractals, 2018,110,169–177.

    Google Scholar

    [19] T. Koshy, Pell and Pell-Lucas Numbers with Applications, (Vol. 431). New York, Springer, 2014.

    Google Scholar

    [20] N. Laskin, Fractional quantum mechanics and Levy path integrals, Physics Letters A, 2000,268,298. doi: 10.1016/S0375-9601(00)00201-2

    CrossRef Google Scholar

    [21] N. Laskin, Fractional Schrödinger equation, Physical Review E, 2002, 66, 056108. doi: 10.1103/PhysRevE.66.056108

    CrossRef Google Scholar

    [22] N. Laskin, Fractals and quantum mechanics, Chaos, 2000, 10,780. doi: 10.1063/1.1050284

    CrossRef Google Scholar

    [23] J. G. Liu, M. S. Osman and A.M. Wazwaz, A variety of nonautonomous complex wave solutions for the (2+1)-dimensional non-linear Schrödinger equation with variable coefficients in non-linear optical fibers, Optik, 2019,180,917–923. doi: 10.1016/j.ijleo.2018.12.002

    CrossRef Google Scholar

    [24] J. G. Liu, M. S. Osman, W. H. Zhu, L. Zhou and G. P. Ai, Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers, Appl. Phys. B, 2019,125,175.

    Google Scholar

    [25] Q. Liu, F. Zeng and C. Li, Finite difference method for time-space-fractional Schrödinger equation, Int. J. Comput. Math., 2015, 92(7), 1439–1451. doi: 10.1080/00207160.2014.945440

    CrossRef Google Scholar

    [26] Z. Liu, S. Lu and F. Liu, Fully discrete spectral methods for solving time fractional nonlinear Sine–Gordon equation with smooth and non-smooth solutions, Appl. Math. Comput., 2018,333,213–224.

    Google Scholar

    [27] R. L. Magin, C. Ingo, L. Colon-Perez, W. Triplett and T. H. Mareci, Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Microporous Mesoporous Mater, 2013,178, 39–43. doi: 10.1016/j.micromeso.2013.02.054

    CrossRef Google Scholar

    [28] B. Mathieu, P. Melchior, A. Oustaloup and C. Ceyral, Fractional differentiation for edge detection, Signal Process., 2003, 83(11), 2421–2432. doi: 10.1016/S0165-1684(03)00194-4

    CrossRef Google Scholar

    [29] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

    Google Scholar

    [30] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, Translation from the Russian, 1993.

    Google Scholar

    [31] M. A. Sarhan, S. Shihab, B. E. Kashem and M. Rasheed, New Exact Operational Shifted Pell Matrices and Their Application in Astrophysics, in Journal of Physics: Conference Series (Vol. 1879, No. 2, p. 022122). IOP Publishing, 2021.

    Google Scholar

    [32] M. A. Sarhan, S. Shihab and M. Rasheed, A novel spectral modified Pell polynomials for solving singular differential equations, Al-Mustansiriyah Journal of Science, 2021, 32(1), 18–24. doi: 10.23851/mjs.v32i1.930

    CrossRef Google Scholar

    [33] M. A. Sarhan, S. Shihab and M. Rasheed, Some Results on a Two Variables Pell Polynomials, Al-Qadisiyah Journal of Pure Science, 2021, 26(1), 55–70. doi: 10.29350/qjps.2021.26.1.1246

    CrossRef Google Scholar

    [34] H. Singh, F. Akhavan Ghassabzadeh, E. Tohidi and C. Cattani, Legendre spectral method for the fractional Bratu problem, Math. Methods Appl. Sci., 2020, 43(9), 5941–5952. doi: 10.1002/mma.6334

    CrossRef Google Scholar

    [35] Y. Tasyurdu, D. Cifci and O. Deveci, Applications of Pell polynomials in rings, J. Math. Res., 2018, 10(3).

    Google Scholar

    [36] J. Wang, X. Liu and Y. Zhou, A high-order accurate wavelet method for solving Schrödinger equations with general nonlinearity, Appl. Math. Mech., 2018, 39(2), 275–290. doi: 10.1007/s10483-018-2299-6

    CrossRef Google Scholar

    [37] Y. Wang and L. Mei, A conservative spectral Galerkin method for the coupled nonlinear space-fractional Schrödinger equations, Int. J. Comput. Math., 2019, 96(12), 2387–2410. doi: 10.1080/00207160.2018.1563687

    CrossRef Google Scholar

    [38] S. Zhang and H. Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 2011,375(7), 1069–1073. doi: 10.1016/j.physleta.2011.01.029

    CrossRef Google Scholar

    [39] Y. Zhang, A. Kumar, S. Kumar, D. Baleanu and X. J. Yang, Residual power series method for time-fractional Schrödinger equations, J. Nonlinear Sci. Appl., 2016, 9(11), 5821–5829. doi: 10.22436/jnsa.009.11.10

    CrossRef Google Scholar

    [40] M. Zheng, F. Liu and Z. Jin, The global analysis on the spectral collocation method for time fractional Schrodinger equation, Appl. Math. Comput., 2020,365, 124689.

    Google Scholar

Figures(7)  /  Tables(8)

Article Metrics

Article views(1663) PDF downloads(432) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint