2024 Volume 14 Issue 2
Article Contents

Qian Hu, Zhihong Liu, Wei Jin, Wenbo Zhang. UNIVALENCE CONDITIONS AND RADIUS PROBLEMS FOR HARMONIC DIFFERENTIAL OPERATORS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 947-963. doi: 10.11948/20230218
Citation: Qian Hu, Zhihong Liu, Wei Jin, Wenbo Zhang. UNIVALENCE CONDITIONS AND RADIUS PROBLEMS FOR HARMONIC DIFFERENTIAL OPERATORS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 947-963. doi: 10.11948/20230218

UNIVALENCE CONDITIONS AND RADIUS PROBLEMS FOR HARMONIC DIFFERENTIAL OPERATORS

  • This article mainly studies univalence condition, the radius problem of fully starlike (fully convex) and uniformly starlike (uniformly convex) for the harmonic mapping differential operator under specific coefficient conditions. Firstly, several criteria for the univalence of harmonic differential operator terms are obtained, followed by the fully starlike and fully convex radius of the harmonic differential operator $D[f] \in \mathcal{K}_H^2(\lambda)$. Next, the radius of uniformly starlike and uniformly convex of the harmonic differential operator is obtained. Finally, the radius of uniformly starlike and uniformly convex of the harmonic mapping convolution differential operator is obtained.

    MSC: 30C45, 35Q30
  • 加载中
  • [1] Z. Abdulhadi, Y. A. Muhanna and S. Khuri, On some properties of solutions of the biharmonic equation, Appl. Math. Comput., 2006, 177(1), 346-351.

    Google Scholar

    [2] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 1915, 17(1), 12-22. doi: 10.2307/2007212

    CrossRef Google Scholar

    [3] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., 2004, 2004(27), 1429-1436. doi: 10.1155/S0161171204108090

    CrossRef Google Scholar

    [4] F. G. Avkhadiev, R. G. Nasibullin and I. K. Shafigullin, Becker type univalence conditions for harmonic mappings, Russ. Math., 2016, 60, 69-73.

    Google Scholar

    [5] S. Beig and V. Ravichandran, Convolution and convex combination of harmonic mappings, Bull. Iran. Math. Soc., 2019, 45, 1467-1486. doi: 10.1007/s41980-019-00209-3

    CrossRef Google Scholar

    [6] J. E. Brown, Images of disks under convex and starlike functions, Math. Z., 1989, 202, 457-462. doi: 10.1007/BF01221584

    CrossRef Google Scholar

    [7] M. Chuaqui, P. Duren and B. Osgood, Curvature properties of planar harmonic mappings, Comput. Methods Funct. Theory, 2004, 4(1), 127-142. doi: 10.1007/BF03321060

    CrossRef Google Scholar

    [8] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn., 1984, 9, 3-25. doi: 10.5186/aasfm.1984.0905

    CrossRef Google Scholar

    [9] M. Dorff, M. Nowak and M. Wołoszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ., 2012, 57(5), 489-503. doi: 10.1080/17476933.2010.487211

    CrossRef Google Scholar

    [10] N. Ghosh and A. Vasudevarao, The radii of fully starlikeness and fully convexity of a harmonic operator, Monatsh. Math., 2019, 188, 653-666. doi: 10.1007/s00605-018-1163-1

    CrossRef Google Scholar

    [11] M. R. Goodloe, Hadamard products of convex harmonic mappings, Complex Var., 2002, 47(2), 81-92.

    Google Scholar

    [12] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 1991, 155(2), 364-370. doi: 10.1016/0022-247X(91)90006-L

    CrossRef Google Scholar

    [13] J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 1999, 235(2), 470-477. doi: 10.1006/jmaa.1999.6377

    CrossRef Google Scholar

    [14] D. Kalaj, S. Ponnusamy and M. Vuorinen, Radius of close-to-convexity and fully starlikeness of harmonic mappings, Complex Var. Elliptic Equ., 2014, 59(4), 539-552. doi: 10.1080/17476933.2012.759565

    CrossRef Google Scholar

    [15] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 1936, 42(10), 689-692. doi: 10.1090/S0002-9904-1936-06397-4

    CrossRef Google Scholar

    [16] L. L. Li and S. Ponnusamy, Note on the convolution of harmonic mappings, Bull. Aust. Math. Soc., 2019, 99(3), 421-431. doi: 10.1017/S0004972719000029

    CrossRef Google Scholar

    [17] Z. H. Liu and S. Ponnusamy, Radius of fully starlikeness and fully convexity of harmonic linear differential operator, Bull. Korean Math. Soc., 2018, 55(3), 819-835.

    Google Scholar

    [18] Y. A. Muhanna and S. Ponnusamy, Extreme points method and univalent harmonic mappings, Complex Analysis and Dynamical Systems IV. Am. Math. Soc., 2016, 667, 223-237.

    Google Scholar

    [19] S. Nagpal and V. Ravichandran, Fully starlike and fully convex harmonic mappings of order α, Ann. Polon. Math., 2013, 108(1), 85-107. doi: 10.4064/ap108-1-7

    CrossRef Google Scholar

    [20] S. Ponnusamy and A. S. Kaliraj, Univalent harmonic mappings convex in one direction, Anal. Math. Phys., 2014, 4, 221-236. doi: 10.1007/s13324-013-0066-5

    CrossRef Google Scholar

    [21] S. Ponnusamy, H. Yamamoto and H. Yanagihara, Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ., 2013, 58(1), 23-34. doi: 10.1080/17476933.2010.551200

    CrossRef Google Scholar

    [22] P. T. Reddy, B. Venkateswarlu and S. Sreelakshmi, On the univalence criteria for analytic functions defined by differential operator, Int. J. Open Probl. Complex Anal., 2020, 12(1), 2074-2827.

    Google Scholar

    [23] T. Sheil-Small, Constants for planar harmonic mappings, J. Lond. Math. Soc., 1990, 2(2), 237-248.

    Google Scholar

    [24] X. T. Wang, X. Q. Liang and Y. L. Zhang, Precise coefficient estimates for close-to-convex harmonic univalent mappings, J. Math. Anal. Appl., 2001, 263(2), 501-509. doi: 10.1006/jmaa.2001.7626

    CrossRef Google Scholar

Figures(1)

Article Metrics

Article views(1219) PDF downloads(529) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint