Citation: | Shaoguang Shi, Zunwei Fu, Qingyan Wu. ON THE AVERAGE OPERATORS, OSCILLATORY INTEGRALS, SINGULAR INTEGRALS AND THEIR APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 334-378. doi: 10.11948/20230225 |
This paper is a survey on three types of integral operators and their applications based on the research work of the authors and their cooperators in the recent decade. The first type is the average operator, including Hardy operators, Hausdorff operators and Hardy-Littlewood maximal operators. The second is the oscillatory type integral operator, such as one-sided oscillatory integral operators, Fourier transforms, fractional Fourier transforms and linear canonical transforms. The third type is the singular integral operators, including Hilbert transform, Riesz transforms, Cauchy type operators, etc. We mainly investigate their norm estimations, boundedness, weighted estimations, compactness characterizations and their properties in various function spaces.
[1] | F. Beatrous and S. Y. Li, On the boundedness and compactness of operators of Hankel type, J. Funct. Anal., 1993, 111, 350–379. doi: 10.1006/jfan.1993.1017 |
[2] | R. Bu, Z. W. Fu and Y. D. Zhang, Weighted estimates for bilinear square function with non-smooth kernels and commutators, Front. Math. China, 2020, 15, 1–20. doi: 10.1007/s11464-020-0822-4 |
[3] | J. Cao, Z. W. Fu, R. J. Jiang and D. C. Yang, Hardy spaces associated with a pair of commuting operators, Forum Math., 2015, 27(5), 2775–2824. doi: 10.1515/forum-2013-0103 |
[4] | D. -C. Chang, X. T. Duong, J. Li, W. Wang and Q. Y. Wu, An explicit formula of Cauchy-Szegő kernel for quaternionic Siegel upper half space and applications, Indiana Univ. Math. J., 2021, 70(6), 2451–2477. doi: 10.1512/iumj.2021.70.8732 |
[5] | D. -C. Chang, Z. W. Fu, D. C. Yang and S. B. Yang, Real-variable characterizations of Musielak-Orlic-Hardy spaces associated with Schrödinger operators on domains, Math. Method. Appl. Sci., 2016, 39, 533–569. doi: 10.1002/mma.3501 |
[6] | D. -C. Chang, I. Markina and W. Wang, On the Cauchy–Szegö kernel for quaternion Siegel upper half-space, Complex Anal. Oper. Theory, 2013, 7(5), 1623–1654. doi: 10.1007/s11785-012-0282-2 |
[7] | P. Chen, X. T. Duong, J. Li and Q. Y. Wu, Compactness of Riesz trans form commutator on stratified Lie groups, J. Funct. Anal., 2019, 277, 1639–1676. doi: 10.1016/j.jfa.2019.05.008 |
[8] |
W. Chen, Z. W. Fu, L. Grafakos and Y. Wu, Fractional Fourier transforms on $L^p$ and applications, Appl. Comput. Harmon. Anal., 2021, 55, 71–96. doi: 10.1016/j.acha.2021.04.004
CrossRef $L^p$ and applications" target="_blank">Google Scholar |
[9] | W. Chen, Z. W. Fu and Y. Wu, Positive solutions for nonlinear Schrödinger-Kirchhoff equations in $\mathbb{R}^3$, Appl. Math. Letters, 2020, 104, 106274. doi: 10.1016/j.aml.2020.106274 |
[10] | Y. P. Chen and Y. Ding, Compactness of commutators of riesz potential on morrey spaces, Potential Anal., 2009, 30, 301–313. doi: 10.1007/s11118-008-9114-4 |
[11] | Y. P. Chen and Y. Ding, Compactness of commutators for singular integrals on morrey spaces, Canad. J. Math., 2012, 64, 257–281. doi: 10.4153/CJM-2011-043-1 |
[12] | J. C. Chen, D. S. Fan and J. Li, Hausdorff operators on function spaces, Chin. Math. Ann. Ser. B, 2012, 33, 537–556. doi: 10.1007/s11401-012-0724-1 |
[13] | M. Chirst and L. Grafakos, Best constants for two non-convolution inequalities, Proc. Amer. Math. Soc., 1995, 123, 1687–1693. doi: 10.1090/S0002-9939-1995-1239796-6 |
[14] | J. Y. Chu, Z. W. Fu and Q. Y. Wu, The weighted $L^p$ and BMO bounds for weighted Hardy operators on the Heisenberg group, J. Inequal. Appl., 2016, (2016), 282. |
[15] | R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 1976, 103, 611–635. doi: 10.2307/1970954 |
[16] | B. H. Dong, Z. W. Fu and J. S. Xu. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math., 2018, 61, 1807–1824. doi: 10.1007/s11425-017-9274-0 |
[17] |
X. T. Duong, M. Lacey, J. Li, B. D. Wick and Q. Y. Wu, Commutators of Cauchy-Szegő type integrals for domains in $\mathbb C^n$ with minimal smoothness, Indiana Univ. Math. J., 2021, 70(4), 1505–1541. doi: 10.1512/iumj.2021.70.8573
CrossRef $\mathbb C^n$ with minimal smoothness" target="_blank">Google Scholar |
[18] | X. T. Duong, H. Q. Li, J. Li and B. D. Wick, Lower bound for Riesz transform kernels and commutator theorems on stratified nilpotent Lie groups, J. Math. Pures Appl., 2019, 124, 273–299. doi: 10.1016/j.matpur.2018.06.012 |
[19] | G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. |
[20] | Z. W. Fu, R. M. Gong, E. Pozzi and Q. Y. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 2023, 296(5), 1859–1885. doi: 10.1002/mana.202000139 |
[21] | Z. W. Fu, S. L. Gong, S. Z. Lu and W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 2015, 27, 2825–2852. doi: 10.1515/forum-2013-0064 |
[22] | Z. W. Fu, L. Grafakos, Y. Lin, Y. Wu and S. H. Yang. Riesz transform associated with the fractional Fourier transform and applications in image edge detection, Appl. Comput. Harmon. Anal., 2023, 66, 211–235. doi: 10.1016/j.acha.2023.05.003 |
[23] | Z. W. Fu, X. M. Hou, M. Y. Lee and J. Li, A study of one-sided Singular integral and function space via reproducing formula, J. Geom. Anal., 2023, 33, 289. doi: 10.1007/s12220-023-01340-8 |
[24] | Z. W. Fu, Z. G. Liu, S. Z. Lu and H. B. Wang, Characterization for commutators of n-dimensional fractional Hardy operators, Sci. China. Math., 2007, 50, 418–426. |
[25] | Z. W. Fu, S. Z. Lu, Y. Pan and S. G. Shi, Some one-sided estimates for oscillatory singular integrals, Nonlinear Anal., 2014, 108(108), 144–160. |
[26] | Z. W. Fu, S. Z. Lu, S. Sato and S. G. Shi, On weighted weak type norm inequalities for one-sided oscillatory singular integrals, Studia Math., 2011, 207(2), 137–151. doi: 10.4064/sm207-2-3 |
[27] | Z. W. Fu, S. Z. Lu and S. G. Shi, Two characterizations of central BMO space via the commutators of Hardy operators, Forum Math., 2021, 33(2), 505–529. doi: 10.1515/forum-2020-0243 |
[28] |
Z. W. Fu, S. Z. Lu and F. Y. Zhao, Commutators of $n$-dimensional rough Hardy operators, Sci. China. Math., 2011, 54, 95–104. doi: 10.1007/s11425-010-4110-8
CrossRef $n$-dimensional rough Hardy operators" target="_blank">Google Scholar |
[29] | Z. W. Fu, E. Pozzi and Q. Y. Wu, Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions, Front. Math. China, 2021, 16(5), 1269–1296. |
[30] |
Z. W. Fu, Q. Y. Wu and S. Z. Lu, Sharp estimates of $p$-adic Hardy and Hardy-Littlewood-Pólya operators, Acta Math. Sin. (English Ser.), 2013, 29(1), 137–150. doi: 10.1007/s10114-012-0695-x
CrossRef $p$-adic Hardy and Hardy-Littlewood-Pólya operators" target="_blank">Google Scholar |
[31] | R. M. Gong, M. N. Vempati, Q. Y. Wu and P. Z. Xie, Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces, J. Aust. Math. Soc., 2022, 113(1), 36–56. doi: 10.1017/S1446788722000015 |
[32] | L. F. Gu, Riemann-type problem in Hermitian Clifford analysis, Bull. Malays. Math. Sci. Soc., 2019, 42, 2585-2601. doi: 10.1007/s40840-018-0618-9 |
[33] | L. F. Gu, Schwarz-type lemmas associated to a Helmholtz equation, Adv. Appl. Clifford Algebr., 2020, 30, 14(2020). |
[34] | L. F. Gu, Schwarz-type lemmas associated to a Helmholtz equation, Appl. Math. Comput. 2020, 364, 1(2020). |
[35] | L. F. Gu and Y. Y. Liu, The approximate solution of Riemann type problems for Dirac equations by Newton embedding method, J. Appl. Anal. Comput., 2020, 10, 326–334. |
[36] | L. F. Gu, Y. Y. Liu and R. H. Lin, Some integral representation formulas and Schwarz lemmas related to perturbed Dirac operators, J. Appl. Anal. Comput., 2022, 12, 2475–2487. |
[37] | L. F. Gu and D. W. Ma, Dirac operators with gradient potentials and related monogenic functions, Complex Anal. Oper. Theory, 2020, 14, 53(2020). doi: 10.1007/s11785-020-01010-5 |
[38] | L. F. Gu and Z. X. Zhang, Riemann boundary value problem for harmonic functions in Clifford analysis, Math. Nachr., 2014, 287, 1001–1012. doi: 10.1002/mana.201100302 |
[39] | X. Y. Guo and Z. W. Fu, An initial and boundary value problem of fractional Jeffreys' fluid in a porous half spaces, Computers Math. Appl., 2019, 78(6), 1801–1810. doi: 10.1016/j.camwa.2015.11.020 |
[40] |
L. Lanzani and E. Stein, The Cauchy–Szegő projection for domains in $\mathbb C^n$ with minimal smoothness, Duke Math. J., 2017, 166, 125–176.
$\mathbb C^n$ with minimal smoothness" target="_blank">Google Scholar |
[41] |
L. Lanzani and E. Stein, The Cauchy integral in $\mathbb C^n$ for domains with minimal smoothness, Adv. Math., 2014, 264, 776–830. doi: 10.1016/j.aim.2014.07.016
CrossRef $\mathbb C^n$ for domains with minimal smoothness" target="_blank">Google Scholar |
[42] | J. F. Li and S. G. Shi, A local well-posed result for the fifth order KP-Ⅱ initial value problem, J. Math. Anal. Appl., 2013, 402(2), 679–692. doi: 10.1016/j.jmaa.2013.01.069 |
[43] | F. Liu, Z. W. Fu and S. T. Jhang, Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces, Front. Math. China, 2019, 14, 95–122. doi: 10.1007/s11464-019-0742-3 |
[44] | F. J. Martín-Reyes and A. be la Torre, One-sided BMO spaces, J. London Math. Soc., 1994, 49, 529–542. doi: 10.1112/jlms/49.3.529 |
[45] | F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I: Oscillatory integrals, J. Funct. Anal., 1987, 73, 179–194. doi: 10.1016/0022-1236(87)90064-4 |
[46] | J. M. Ruan, D. S. Fan and Q. Y. Wu, Weighted Herz space estimates for Hausdorff operators on the Heisenberg group, Banach J. Math. Anal., 2017, 11, 513–535. doi: 10.1215/17358787-2017-0004 |
[47] | J. M. Ruan, Q. Y. Wu and D. S. Fan, Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group, Math. Inequal. Appl., 2019, 22(1), 307–329. |
[48] | E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 1986, 297, 53–61. doi: 10.1090/S0002-9947-1986-0849466-0 |
[49] | S. G. Shi, Estimates for vector-valued commutators on weighted Morrey spaces and applications, Acta. Math. Sin. (English Ser.), 2013, 29(5), 883–896. doi: 10.1007/s10114-013-2012-8 |
[50] |
S. G. Shi, Some notes on supersolutions of fractional $p$-Laplace equation, J. Math. Anal. Appl., 463(2018), 1052–1074. doi: 10.1016/j.jmaa.2018.03.064
CrossRef $p$-Laplace equation" target="_blank">Google Scholar |
[51] | S. G. Shi, Z. W. Fu and S. Z. Lu, Weighted estimates for commutators of one-sided oscillatory operators, Front. Math. China, 2011, 6(3), 507–516. doi: 10.1007/s11464-011-0113-1 |
[52] | S. G. Shi, Z. W. Fu and S. Z. Lu, On the compactness of commutators of Hardy operators, Pacific J. Math., 2020, 1(307), 239–256. |
[53] | S. G. Shi, Z. W. Fu and F. Y. Zhao, Estimates for operators on weighted Morrey spaces and their applications to nondivergence elliptic equations, J. Inequal. Appl., 2013, 2013, 390. doi: 10.1186/1029-242X-2013-390 |
[54] | S. G. Shi and J. F. Li, Global smoothing for the periodic Benjamin equation in low regularity spaces, Sci. China Math., 2013, 56(10), 2051–2061. doi: 10.1007/s11425-013-4672-3 |
[55] | S. G. Shi and J. F. Li, Local well-posedness for periodic Benjamin equation with small initial data, Bound. Value Probl., 2015, 60, 1–15. |
[56] | S. G. Shi and S. Z. Lu, Some characterizations of Campanato spaces via commutators on Morrey spaces, Pacific J. Math., 2013, 264, 221–234. doi: 10.2140/pjm.2013.264.221 |
[57] | S. G. Shi and S. Z. Lu, A characterization of Campanato space via commutator of fractional integral, J. Math. Anal. Appl., 2014, 419, 123–137. doi: 10.1016/j.jmaa.2014.04.040 |
[58] | S. G. Shi and S. Z. Lu, Characterization of the central Campanato space via the commutator operator of Hardy type, J. Math. Anal. Appl., 2015, 429(3), 713–732. |
[59] | S. G. Shi and S. Z. Lu, Some norm inequalities for commutators with symbol function in Morrey spaces, J. Math. Inequal., 2014, 8(4), 889–897. |
[60] | S. G. Shi and J. Xiao, A tracing of the fractional temperature field, Sci. China Math., 2017, 60(11), 2303–2320. doi: 10.1007/s11425-016-0494-6 |
[61] | S. G. Shi and J. Xiao, Fractional capacities relative to bounded open Lipschitz sets complemented, Calc. Var. Partial Differential Equations, 2017, 56, 3(2017). |
[62] | S. G. Shi and J. Xiao, On fractional capacities relative to bounded open Lipschitz sets, Potential Anal., 2016, 45(2), 261–298. doi: 10.1007/s11118-016-9545-2 |
[63] |
S. G. Shi, Q. Y. Xue and K. Yabuta, On the boundedness of multilinear Littlewood-Paley $g_{\lambda}^{*}$ function, J. Math. Pures Appl., 2014, 101(3), 394–413. doi: 10.1016/j.matpur.2013.06.007
CrossRef $g_{\lambda}^{*}$ function" target="_blank">Google Scholar |
[64] | S. G. Shi, Z. C. Zhai and L. Zhang, Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional p-Laplace and the fractional p-convexity, Adv. Calc. Var., 2023. https://doi.org/10.1515/acv-2021-0110. doi: 10.1515/acv-2021-0110 |
[65] | S. G. Shi and L. Zhang, Norm inequalities for higher order commutators of one sided oscillatory singular integrals, J. Inequal. Appl., 2016, 88(2016). |
[66] | S. G. Shi and L. Zhang, Dual characterization of fractional capacity via solution of fractional $p$-Laplace equation, Math. Nachr., 2020, 2233–2247. |
[67] | S. G. Shi, L. Zhang and G. L. Wang, Fractional non-linear regularity, potential and balayage, J. Geom. Anal., 2022, 32, 221(2022). |
[68] | E. M. Stein and T. S. Murphy, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993. |
[69] | A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J., 1978, 30, 163–171. |
[70] | Q. Y. Wu and D. S. Fan, Hardy space estimates of Hausdorff operators on the Heisenberg group, Nonlinear Anal., 2017, 164, 135–154. doi: 10.1016/j.na.2017.09.001 |
[71] |
Q. Y. Wu and Z. W. Fu, Weighted $p$-adic Hardy operators and their commutators on $p$-adic central Morrey spaces, Bull. Malays. Math. Sci. Soc., 2017, 40, 635–654. doi: 10.1007/s40840-017-0444-5
CrossRef $p$-adic Hardy operators and their commutators on |
[72] | Q. Y. Wu and Z. W. Fu, Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group, Banach J. Math. Anal., 2018, 12(4), 909–934. doi: 10.1215/17358787-2018-0006 |
[73] | Q. Y. Wu and Z. W. Fu, Sharp estimates for Hardy operators on Heisenberg group, Front. Math. China, 2016, 11(1), 155–172. doi: 10.1007/s11464-015-0508-5 |
[74] |
Q. Y. Wu, S. Z. Lu and Z. W. Fu, $p$-adic central function spaces and singular integral operators, China. J. Contemp. Math., 2016, 37(4), 1–18.
$p$-adic central function spaces and singular integral operators" target="_blank">Google Scholar |
[75] | Y. Wu and W. Chen, On strong indefinite Schrodinger equations with non-periodic potential, J. Appl. Anal. Comput., 2023, 13(1), 1–10. |
[76] | M. H. Yang, Z. W. Fu and S. Y. Liu, Analyticity and existence of the Keller-Segel-Navier-Stokes equations in critical Besov spaces, Adv. Nonlinear Stud., 2018, 18, 517–535. doi: 10.1515/ans-2017-6046 |
[77] | M. H. Yang, Z. W. Fu and J. Y. Sun, Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces, J. Differential Equations, 2019, 266, 5867–5894. doi: 10.1016/j.jde.2018.10.050 |
[78] | M. H. Yang, Z. W. Fu, J. Y. Sun and Z. Wang, The singular convergence of a Chemotaxis-Fluid system modeling coral fertilization, Acta Math. Sci., 2023, 43, 492–504. doi: 10.1007/s10473-023-0202-8 |
[79] | M. H. Yang, Y. M. Zi and Z. W. Fu, An application of BMO-type space to Chemotaxis-fluid equation, Acta Math. Sinica (English Ser.), 2023, 39, 1650–1666. doi: 10.1007/s10114-023-1514-2 |
[80] | S. B. Yang, D. -C. Chang, D. C. Yang and Z. W. Fu, Gradient estimates via rearrangements for solutions of some Schrödinger equations, Anal. Appl., 2018, 16, 339–361. doi: 10.1142/S0219530517500142 |
[81] |
Y. N. Yang, Q. Y. Wu and S. T. Jhang, $2D$ linear canonical transforms on $L^p$ and applications, Fractal Fract., 2023, 7(12), 100.
$2D$ linear canonical transforms on |
[82] | Y. N. Yang, Q. Y. Wu, S. T. Jhang and Q. Q. Kang, Approximation theorems associated with multidimensional fractional Fourier transform and applications in Laplace and heat equations, Fractal. Fract., 2022, 6(11), 625. doi: 10.3390/fractalfract6110625 |
[83] |
F. Y. Zhao, Z. W. Fu and S. Z. Lu, $M_{p} $ weights for bilinear Hardy operators on $\mathbb R ^{n}$, Collect. Math., 2014, 65, 87–102. doi: 10.1007/s13348-013-0083-6
CrossRef $M_{p} $ weights for bilinear Hardy operators on |
[84] |
F. Y. Zhao and S. Z. Lu, A characterization of $\lambda$-central $BMO$ space, Front. Math. China, 2013, 8, 229–238. doi: 10.1007/s11464-012-0251-0
CrossRef $\lambda$-central |