Citation: | Li Zhou, Chuanxi Zhu, Shufen Liu. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF GROUND STATE SOLUTIONS FOR A CLASS OF MAGNETIC KIRCHHOFF CHOQUARD TYPE EQUATION WITH A STEEP POTENTIAL WELL[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 379-391. doi: 10.11948/20230226 |
In this paper, we consider the following nonlinear magnetic Kirchhoff Choquard type equation
$ \begin{align*} &[a+b\int _{ \mathbb{R}^N}(|\nabla_A u|^2+\lambda V(x)|u|^2)\text{d}x](-\Delta_A u+\lambda V(x)u)\\=&(I_{\alpha}*F(|u|))\frac{f(|u|)}{|u|}u, \, \, \text{in}\, \, \mathbb{R}^N, \end{align*} $
where $ u: \mathbb{R}^N\rightarrow \mathbb{C} $, $ A: \mathbb{R}^N\rightarrow \mathbb{R}^N $ is a vector potential, $ N\geq 3 $, $ a>0 $, $ b>0 $, $ \alpha\, \in\, (N-2, N] $, $ V:\, \mathbb{R}^N \rightarrow \mathbb{R} $ is a scalar potential function and $ I_{\alpha} $ is a Riesz potential of order $ \alpha\, \in\, (N-2, N] $. Under certain assumptions on $ A(x) $, $ V(x) $ and $ f(t) $, we prove that the equation has at least one ground state solution by variational methods and investigate the asymptotic behavior of solutions.
[1] | C. O. Alves and G. M. Figueiredo, Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field, Milan J. Math., 2014, 82, 389–405. doi: 10.1007/s00032-014-0225-7 |
[2] | C. O. Alves, G. M. Figueiredo and M. F. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Comm. Partial Differential and Equations, 2011, 36, 1565–1586. doi: 10.1080/03605302.2011.593013 |
[3] | C. O. Alves, G. M. Figueiredo and M. B. Yang, Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field, Asymptot. Anal., 2016, 96, 135–159. |
[4] | C. O. Alves and G. M. Figueiredo, Multi-bump solutions for a Kirchhoff-type problem, Adv. Nonlinear Anal., 2016, 51, 1–26. |
[5] | C. O. Alves, A. B. Nóbrega and M. B. Yang, Multi-bump solutions for Choquard equation with deepning potential well, Calc. Var. Partial Differ. Equ., 2016, 55(3), 1–28. |
[6] | G. Arioli and A. Szulkin, A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal., 2003, 170, 277–293. doi: 10.1007/s00205-003-0274-5 |
[7] | T. Bartsch, A. Pankov and Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 2001, 3, 549–569. doi: 10.1142/S0219199701000494 |
[8] | T. Bartsch and Z. Q. Wang, Existence and multiplicity results for superlinear elliptic problems on $ \mathbb{R}^N$, Commun. Partial Differ. Equ., 1995, 20, 1725–1741. doi: 10.1080/03605309508821149 |
[9] | H. Bueno, G. G. Mamani and G. A. Pereira, Ground state of a magnetic nonlinear Choquard equation, Nonlinear Anal., 2019, 181, 189–199. doi: 10.1016/j.na.2018.11.012 |
[10] | E. Cabanillas Lapa, Global solutions for a nonlinear Kirchhoff type equation with viscosity, Opuscula Math., 2023, 43(5), 689–701. doi: 10.7494/OpMath.2023.43.5.689 |
[11] | C. Chen, Y. Kuo and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Diff. Eqs., 2011, 250, 1876–1908. doi: 10.1016/j.jde.2010.11.017 |
[12] | H. Chen and C. X. Zhu, Delayed-state-feedback exponential stabilization for uncertain Markovian jump systems with mode-dependent time-varying state delays, Nonlinear Dyn., 2012, 69, 1023–1039. doi: 10.1007/s11071-012-0324-3 |
[13] | S. Cingolani, M. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 2012, 63, 233–248. doi: 10.1007/s00033-011-0166-8 |
[14] | S. Cingolani, M. Clapp and M. Secchi, Intertwining semiclassical solutions to a Schrödinger-Newton system, Discrete Contin. Dyn. Syst. Ser. S, 2013, 6(4), 891–908. |
[15] | S. Cingolani, S. Secchi and M. Squassina, Semi-classical limit for Schrödinger equations solutions with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh., 2010, 140A, 973–1009. |
[16] | M. Clapp and A. Szulkin, Multiple solutions to a nonlinear Schrödinger equation with Aharonov-Bohm magnetic potential, NoDEA Nonlinear Differential Equations Appl., 2010, 17, 229–248. doi: 10.1007/s00030-009-0051-8 |
[17] | M. J. Esteban and P. L. Lions, Stationary solutions of a nonlinear Schrödinger equations with an external magnetic field, Partial Differential Equations and the Calculus of Variations, Essays in Honor of Ennio De, 1989, 401–409. |
[18] | M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal., 2016, 271, 107–135. doi: 10.1016/j.jfa.2016.04.019 |
[19] | G. Gu and Z. Yang, On the singularly perturbation fractional Kirchhoff equations: critical case, Adv. Nonlinear Anal., 2022, 11(1), 1097–1116. doi: 10.1515/anona-2022-0234 |
[20] | C. Ji and V. D. R$\breve{a}$dulescu, Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in $ \mathbb{R}^2$, Manuscripta Math., 2021, 164, 509–542. doi: 10.1007/s00229-020-01195-1 |
[21] | C. Ji and V. D. R$\breve{a}$dulescu, Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation, Calc. Var. Partial Differential Equations, 2020, 59, art 115, 28 pp. |
[22] | C. Ji and V. D. R$\breve{a}$dulescu, Concentration phenomena for nonlinear magnetic Schrödinger equations with critical growth, Isr. J. Math., 2021, 241, 465–500. doi: 10.1007/s11856-021-2105-5 |
[23] | G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $ \mathbb{R}^3$, J. Diff. Eqs., 2014, 257, 566–600. doi: 10.1016/j.jde.2014.04.011 |
[24] | E. H. Lieb and M. Loss, Analysis, second ed, Grad. Stud. Math., vol 14, American Mathematical Scoiety, Province, RL, 2001. |
[25] | D. Lü, A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Annal, 2014, 99, 35–48. doi: 10.1016/j.na.2013.12.022 |
[26] | H. X. Luo, Ground state solutions of Poho$z$aev type and Nehari type for a class of nonlinear Choquard equations, J. Math. Anal. Appl., 2018, 467, 842–862. doi: 10.1016/j.jmaa.2018.07.055 |
[27] | L. Ma and Z. Lin, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch Ration. Mech. Aral., 2010, 195, 455–467. doi: 10.1007/s00205-008-0208-3 |
[28] | V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 2013, 265, 153–184. doi: 10.1016/j.jfa.2013.04.007 |
[29] | V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 2015, 367, 6557–6579. |
[30] | V. Moroz and J. Van Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Diff. Eqs., 2013, 254, 3089–3145. doi: 10.1016/j.jde.2012.12.019 |
[31] | V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 2015, 17, 1550005. doi: 10.1142/S0219199715500054 |
[32] | V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 2017, 19, 773–813. doi: 10.1007/s11784-016-0373-1 |
[33] | H. M. Nguyen, A. Pinamonti, M. Squassina and E. Vecchi, New characterizations of magnetic Soblev spaces, Adv. Nonlinear Anal., 2018, 7, 227–245. doi: 10.1515/anona-2017-0239 |
[34] | X. Sun, Y. Song, S. Liang and B. Zhang, Critical Kirchhoff equations involving the p-sub-Laplacians operators on the Heisenberg group, Bull. Math. Sci., 2023, 13(2), Paper No. 2250006. doi: 10.1142/S1664360722500060 |
[35] | Z. P. Wang and H. S. Zhou, Positive solutions for nonlinear Schrödinger equations with deepening potential well, J. Eur. Math. Soc., 2009, 11, 545–573. |
[36] | M. Willem, Minimax Theorems, Proress in Nonlinear Differential Equations and Their Applications 24, Birkhäuser, Boston, MA, 1996. |
[37] | A. Xia, Multiplicity and concentration results for magnetic relativistic Schrödinger equations, Adv. Nonlinear Anal., 2020, 9, 1161–1186. |
[38] | M. Yang and Y. Wei, Existence and multiplicity of solutions for nonlinear Schrödinger equations solutions with magnetic field and Hartree type nonlinearities, J. Math. Anal. Appl., 2013, 403, 680–694. doi: 10.1016/j.jmaa.2013.02.062 |
[39] | L. F. Yin and X. P. Wu, Existence and concentration of ground state solutions for critical Schrödinger equation with steep potential well, Comput. Math. Appl., 2019, 78, 3862–3871. doi: 10.1016/j.camwa.2019.06.016 |
[40] | L. Zhang, X. Tang and P. Chen, On the planar Kirchhoff-type problem involving supercritical exponential growth, Adv. Nonlinear Anal., 2022, 11(1), 1412–1446. doi: 10.1515/anona-2022-0250 |
[41] | S. Zhou, Z. Liu and J. Zhang, Ground states for Choquard type equations with weighted potentials and Hardy-Littlewood-Sobolev lower critical exponent, Adv. Nonlinear Anal., 2022, 11(1), 141–158. |