Citation: | Zhiyu Li, Zhaowen Zheng, Jianfang Qin. THE BASIS PROPERTY OF WEAK EIGENFUNCTIONS FOR STURM-LIOUVILLE PROBLEM WITH BOUNDARY CONDITIONS DEPENDENT RATIONALLY ON THE EIGENPARAMETER[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 424-435. doi: 10.11948/20230262 |
Using the theory of operator pencils in Hilbert space and suitable integral transformation, the basis property of weak eigenfunctions for the Sturm-Liouville problem with eigenparameter dependent rationally on the boundary conditions is obtained, and the asymptotic behavior of eigenvalues is also involved.
[1] | B. P. Allahverdiev and H. Tuna, Singular discontinuous Hamiltonian systems, J. Appl. Anal. Comput., 2022, 12(4), 1386–1402. DOI: 10.11948/20210145. |
[2] | J. Ao and J. Sun, Matrix representations of Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Linear Algebra Appl., 2013, 438(5), 2359–2365. DOI: 10.1016/j.laa.2012.10.018. |
[3] | B. Belinskiy and J. Dauer, On a regular Sturm-Liouville problem on a finite interval with the eigenvalue parameter appearing linearly in the boundary conditions, Proceedings of 1996 conference held at the University of Tennessee, Knoxville, in conjunction with the 26th Barrett memorial lecture series, 183–196. |
[4] | G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, 186, American Mathematical Soc., 2013. |
[5] | P. A. Binding, P. J. Browne and B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter I, Proc. Edinb. Math. Soc., 2002, 45(3), 631–645. DOI: 10.1017/S0013091501000773. |
[6] | P. A. Binding, P. J. Browne and B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter Ⅱ, J. Comput. Appl. Math., 2002, 148(1), 147–168. DOI: 10.1016/S0377-0427(02)00579-4. |
[7] | J. Cai, K. Li and Z. Zheng, A singular Sturm-Liouville problem with limit circle endpoint and boundary conditions rationally dependent on the eigenparameter, Mediterr. J. Math., 2022, 19(4), 184. DOI: 10.1007/s00009-022-02109-z. |
[8] | I. Gohberg and M. G. Kreǐn, Introduction to the Theory of Linear Non-Selfadjoint Operators, Translation of Mathematical Monographs, 18, American Mathematical Soc., Rhode Island, 1969. |
[9] | M. V. Keldysh, On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations, Dokl. Akad. Nauk SSSR, 1951, 77(1), 11–13. |
[10] | A. G. Kostyuchenko and A. A. Shkalikov, Self-adjoint quadratic operator pencils and elliptic problems, Funct. Anal. Appl., 1983, 17(2), 109–128. DOI: 10.1007/BF01083136. |
[11] | O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, 1985. |
[12] | A. S. Markus, Introduction to the Spectral Theory of Polynomial Pencils, Translation of Mathematical Monographs, American Mathematical Soc., Providence, Rhode Island, 1988. |
[13] | O. S. Mukhtarov and K. Aydemir, Basis properties of the eigenfunctions of two-interval Sturm-Liouville problems, Anal. Math. Phys., 2019, 9(3), 1363–1382. DOI: 10.1007/s13324-018-0242-8. |
[14] | O. S. Mukhtarov and K. Aydemir, Discontinuous Sturm-Liouville problems involving an abstract linear operator, J. Appl. Anal. Comput., 2020, 10(4), 1545–1560. DOI: 10.11948/20190249. |
[15] | H. Olǧar and F. S. Muhtarov, The basis property of the system of weak eigenfunctions of a discontinuous Sturm-Liouville problem, Metiderr. J. Math., 2017, 14(3), 1–13. DOI: 10.1007/s00009-017-0915-9. |
[16] | H. Olǧar and O. S. Mukhtarov, Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions, J. Math. Phys., 2017, 58(4), 042201. DOI: 10.1063/1.4979615. |
[17] | H. Olǧar and O. S. Mukhtarov, Some properties of eigenvalues and generalized eigenvectors of one boundary value problem, Filomat, 2018, 32(3), 911–920. DOI: 10.2298/FIL18039110. |
[18] | A. S. Ozkan and B. Keskin, Spectral problems for Sturm-Liouville operator with boundary and jump conditions linearly dependent on the eigenparameter, Inverse Probl. Sci. En., 2012, 20(6), 799–808. |
[19] | L. Rodman, An Introduction to Operator Polynomials, Birkhaüser Verlag, Boston, Massachusetts, 1989. |
[20] | J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary condition, Math. Z., 1973, 133, 301–312. DOI: 10.1007/BF01177870. |
[21] | H. Zhang, Y. Chen and J. Ao, A generalized discontinuous Sturm-Liouville problem with boundary conditions rationally dependent on the eigenparameter, J. Differ. Equations, 2023, 352, 354–372. DOI: 10.1016/j.jde.2023.01.047. |
[22] | X. Zhu, Z. Zheng and K. Li, Spectrum and spectral singularities of a quadratic pencil of a schrödinger operator with boundary conditions dependent on the eigenparameter, Acta Math. Sinica, English Series, 2023, 39(11), 2164–2180. DOI: 10.1007/s10114-023-1413-6. |