Citation: | Chaoxiong Du, Wentao Huang. BIFURCATION OF LIMIT CYCLE AT THE INFINITY ON A CENTER MANIFOLDS IN SPACE VECTOR FIELD[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 408-423. doi: 10.11948/20230254 |
In this paper, we deal with the problem of large amplitude limit cycles bifurcation at infinity in space vector field. By making two appropriate transformations and making use of singular values methods on a center manifold to compute focal values carefully, we obtain the simplified expressions of the first five focal values at the infinity by using symbolic calculation methods. Further, we show the infinity can bifurcate 5 large limit cycles.
[1] | Y. An and C. Wang, Bifurcation of one-parameter periodic orbits of three-dimensional differential system, Int. J. Bifurcation and Chaos, 2014, 23, 1350121. |
[2] | T. R. Blows and C. Rousseau, Bifurcation at infinity in polynomial vector fields, J. Diff. Eqs., 1993, 104, 215–242. doi: 10.1006/jdeq.1993.1070 |
[3] | C. Du and W. Huang, Hopf bifurcation at a degenerate singular point in 3-dimensional vector field, J. Appl. Anal. Comput., 2021, 11(6), 3001–3013. |
[4] | C. Du and Y. Liu, General center conditions and bifurcation of limit cycles for a quasi-symmetric seventh degree system, Comput. Math. Appl., 2008, 56, 2957–2969. doi: 10.1016/j.camwa.2008.07.022 |
[5] | C. Du, Q. Wang and W. Huang, Three-dimensional Hopf bifurcation for a class of cubic Kolmogorov model, Int. J. Bifurcation and Chaos, 2014, 24(4), 1450036. |
[6] | C. Du, Q. Wang and Y. Liu, Limit cycles bifurcations for a class of 3-dimensional quadratic systems, Act. Appl. Math., 2015, 136, 1–18. doi: 10.1007/s10440-014-9881-4 |
[7] | E. Freire, M. Ordonez and E. Ponce, Bifurcations from a center at infinity in 3D piecewise linear systems with two zones, Physica D: Nonlinear Phenomena, 2020, 402, 132280. doi: 10.1016/j.physd.2019.132280 |
[8] | M. Han and F. Jiang, Qualitative analysis of crossing limit cycles in discontinuous LišŠnard-type differential systems, J. Nonl. Mod. Anal., 2019, 1, 527–543. |
[9] | M. Han and S. Liu, Further studies on limit cycle bifurcations for piecewise smooth near-Hamiltonian sysytem with multiple parameters, J. Appl. Anal. Comput., 2020, 10(2), 816–829. |
[10] | M. Han and W. Lu, Hopf bifurcation of limit cycles by perturbing piecewise integrable systems, Bulletin. Sci. Math., 2020, 161, 102866. doi: 10.1016/j.bulsci.2020.102866 |
[11] | F. Li, Y. Jin and Y. Tian, Integrability and linearizability of cubic Z2 systems with non-resonant singular points, J. Diff. Eqs., 2020, 269(10), 9026–9049. doi: 10.1016/j.jde.2020.06.036 |
[12] | F. Li, Y. Liu, Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic Z2-equivariant planar systems, J. Diff. Eqs., 2020, 268(7), 3819–3847. doi: 10.1016/j.jde.2019.10.011 |
[13] | X. Liu and M. Han, Bifurcation of periodic orbits of a three-dimensional system, Chin. Annal. Math., 2005, 26, 253–274. doi: 10.1142/S025295990500021X |
[14] | Y. Liu and W. Huang, Seven large-amplitude limit cyclea in a cubic polynomial system, Int. J. Bifurcation and Chaos, 2006, 16, 473–485. doi: 10.1142/S0218127406014940 |
[15] | J. Llibre, A. Makhlouf and S. Badi, 3-dimensional Hopf bifurcation via averaging theory of second order, Discrete Cont. Dyn. Syst., 2009, 25, 1287–1295. doi: 10.3934/dcds.2009.25.1287 |
[16] | K. Murakami, A concrete example with three limit cycles in Zeemans class 29 for three dimensional Lotka-Volterra competitive systems, Math. Biosci., 2019, 308, 38–41. doi: 10.1016/j.mbs.2018.12.006 |
[17] | J. Shen, S. Chen and K. Lin, Study on the stability and bifurcations of limit cycles in higher-dimensional nonlinear autonomous systems, Discrete Cont. Dyn. Syst., 2011, 15, 231–254. |
[18] | Q. Wang, W. Huang and J. Feng, Multiple limit cycles and centers on center manifolds for Lorenz system, Appl. Math. Comput., 2014, 238, 281–288. |
[19] | Q. Wang, W. Huang and B. Li, Limit cycles and singular point quantities for a 3D Lotka-Volterra system, Appl. Math. Comput., 2011, 217, 8856–8859. |
[20] | Q. Wang, W. Huang and H. Wu, Bifurcation of limit cycles for 3D Lotka-Volterra competitive systems, Act. Appl. Math., 2011, 114, 207–218. doi: 10.1007/s10440-011-9609-7 |
[21] | Q. Wang, Y. Liu and H. Chen, Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems, B. Sci. Math., 2010, 134, 786–798. doi: 10.1016/j.bulsci.2009.12.001 |
[22] | P. Yu and M. Han, Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation, Appl. Math. Lett., 2015, 44, 17–20. doi: 10.1016/j.aml.2014.12.010 |
[23] | Q. Zhang and Y. Liu, A cubic polynomial system with seven limit cycles at infinity, Appl. Math. Computation, 2006, 177, 319–329. doi: 10.1016/j.amc.2005.11.011 |
[24] | L. Zhang, F. Li and A. Alsaedi, Sixteen large-amplitude limit cycles in septic system, J. Appl. Analysis and Computation, 2018, 8(6), 1821–1832. |