2024 Volume 14 Issue 1
Article Contents

Chaoxiong Du, Wentao Huang. BIFURCATION OF LIMIT CYCLE AT THE INFINITY ON A CENTER MANIFOLDS IN SPACE VECTOR FIELD[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 408-423. doi: 10.11948/20230254
Citation: Chaoxiong Du, Wentao Huang. BIFURCATION OF LIMIT CYCLE AT THE INFINITY ON A CENTER MANIFOLDS IN SPACE VECTOR FIELD[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 408-423. doi: 10.11948/20230254

BIFURCATION OF LIMIT CYCLE AT THE INFINITY ON A CENTER MANIFOLDS IN SPACE VECTOR FIELD

  • Author Bio: Email: huangwentao@163.com(W. Huang)
  • Corresponding author: Email: ducx123@126.com(C. Du) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12061016) and the Research Fund of Hunan provincial education department(No. 22A719)
  • In this paper, we deal with the problem of large amplitude limit cycles bifurcation at infinity in space vector field. By making two appropriate transformations and making use of singular values methods on a center manifold to compute focal values carefully, we obtain the simplified expressions of the first five focal values at the infinity by using symbolic calculation methods. Further, we show the infinity can bifurcate 5 large limit cycles.

    MSC: 34C07, 34C23
  • 加载中
  • [1] Y. An and C. Wang, Bifurcation of one-parameter periodic orbits of three-dimensional differential system, Int. J. Bifurcation and Chaos, 2014, 23, 1350121.

    Google Scholar

    [2] T. R. Blows and C. Rousseau, Bifurcation at infinity in polynomial vector fields, J. Diff. Eqs., 1993, 104, 215–242. doi: 10.1006/jdeq.1993.1070

    CrossRef Google Scholar

    [3] C. Du and W. Huang, Hopf bifurcation at a degenerate singular point in 3-dimensional vector field, J. Appl. Anal. Comput., 2021, 11(6), 3001–3013.

    Google Scholar

    [4] C. Du and Y. Liu, General center conditions and bifurcation of limit cycles for a quasi-symmetric seventh degree system, Comput. Math. Appl., 2008, 56, 2957–2969. doi: 10.1016/j.camwa.2008.07.022

    CrossRef Google Scholar

    [5] C. Du, Q. Wang and W. Huang, Three-dimensional Hopf bifurcation for a class of cubic Kolmogorov model, Int. J. Bifurcation and Chaos, 2014, 24(4), 1450036.

    Google Scholar

    [6] C. Du, Q. Wang and Y. Liu, Limit cycles bifurcations for a class of 3-dimensional quadratic systems, Act. Appl. Math., 2015, 136, 1–18. doi: 10.1007/s10440-014-9881-4

    CrossRef Google Scholar

    [7] E. Freire, M. Ordonez and E. Ponce, Bifurcations from a center at infinity in 3D piecewise linear systems with two zones, Physica D: Nonlinear Phenomena, 2020, 402, 132280. doi: 10.1016/j.physd.2019.132280

    CrossRef Google Scholar

    [8] M. Han and F. Jiang, Qualitative analysis of crossing limit cycles in discontinuous LišŠnard-type differential systems, J. Nonl. Mod. Anal., 2019, 1, 527–543.

    Google Scholar

    [9] M. Han and S. Liu, Further studies on limit cycle bifurcations for piecewise smooth near-Hamiltonian sysytem with multiple parameters, J. Appl. Anal. Comput., 2020, 10(2), 816–829.

    Google Scholar

    [10] M. Han and W. Lu, Hopf bifurcation of limit cycles by perturbing piecewise integrable systems, Bulletin. Sci. Math., 2020, 161, 102866. doi: 10.1016/j.bulsci.2020.102866

    CrossRef Google Scholar

    [11] F. Li, Y. Jin and Y. Tian, Integrability and linearizability of cubic Z2 systems with non-resonant singular points, J. Diff. Eqs., 2020, 269(10), 9026–9049. doi: 10.1016/j.jde.2020.06.036

    CrossRef Google Scholar

    [12] F. Li, Y. Liu, Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic Z2-equivariant planar systems, J. Diff. Eqs., 2020, 268(7), 3819–3847. doi: 10.1016/j.jde.2019.10.011

    CrossRef Google Scholar

    [13] X. Liu and M. Han, Bifurcation of periodic orbits of a three-dimensional system, Chin. Annal. Math., 2005, 26, 253–274. doi: 10.1142/S025295990500021X

    CrossRef Google Scholar

    [14] Y. Liu and W. Huang, Seven large-amplitude limit cyclea in a cubic polynomial system, Int. J. Bifurcation and Chaos, 2006, 16, 473–485. doi: 10.1142/S0218127406014940

    CrossRef Google Scholar

    [15] J. Llibre, A. Makhlouf and S. Badi, 3-dimensional Hopf bifurcation via averaging theory of second order, Discrete Cont. Dyn. Syst., 2009, 25, 1287–1295. doi: 10.3934/dcds.2009.25.1287

    CrossRef Google Scholar

    [16] K. Murakami, A concrete example with three limit cycles in Zeemans class 29 for three dimensional Lotka-Volterra competitive systems, Math. Biosci., 2019, 308, 38–41. doi: 10.1016/j.mbs.2018.12.006

    CrossRef Google Scholar

    [17] J. Shen, S. Chen and K. Lin, Study on the stability and bifurcations of limit cycles in higher-dimensional nonlinear autonomous systems, Discrete Cont. Dyn. Syst., 2011, 15, 231–254.

    Google Scholar

    [18] Q. Wang, W. Huang and J. Feng, Multiple limit cycles and centers on center manifolds for Lorenz system, Appl. Math. Comput., 2014, 238, 281–288.

    Google Scholar

    [19] Q. Wang, W. Huang and B. Li, Limit cycles and singular point quantities for a 3D Lotka-Volterra system, Appl. Math. Comput., 2011, 217, 8856–8859.

    Google Scholar

    [20] Q. Wang, W. Huang and H. Wu, Bifurcation of limit cycles for 3D Lotka-Volterra competitive systems, Act. Appl. Math., 2011, 114, 207–218. doi: 10.1007/s10440-011-9609-7

    CrossRef Google Scholar

    [21] Q. Wang, Y. Liu and H. Chen, Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems, B. Sci. Math., 2010, 134, 786–798. doi: 10.1016/j.bulsci.2009.12.001

    CrossRef Google Scholar

    [22] P. Yu and M. Han, Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation, Appl. Math. Lett., 2015, 44, 17–20. doi: 10.1016/j.aml.2014.12.010

    CrossRef Google Scholar

    [23] Q. Zhang and Y. Liu, A cubic polynomial system with seven limit cycles at infinity, Appl. Math. Computation, 2006, 177, 319–329. doi: 10.1016/j.amc.2005.11.011

    CrossRef Google Scholar

    [24] L. Zhang, F. Li and A. Alsaedi, Sixteen large-amplitude limit cycles in septic system, J. Appl. Analysis and Computation, 2018, 8(6), 1821–1832.

    Google Scholar

Article Metrics

Article views(1030) PDF downloads(281) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint