2024 Volume 14 Issue 3
Article Contents

Jingmin Pi, Tianxiu Lu, Waseem Anwar, Zhiwen Mo. FURTHER STUDIES OF TOPOLOGICAL TRANSITIVITY IN NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1508-1521. doi: 10.11948/20230264
Citation: Jingmin Pi, Tianxiu Lu, Waseem Anwar, Zhiwen Mo. FURTHER STUDIES OF TOPOLOGICAL TRANSITIVITY IN NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1508-1521. doi: 10.11948/20230264

FURTHER STUDIES OF TOPOLOGICAL TRANSITIVITY IN NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS

  • Author Bio: Email: pi1011225770@126.com(J. Pi); Email: waseemanwarijt@yahoo.com(W. Anwar); Email: mozhiwen@sicnu.edu.cn(Z. Mo)
  • Corresponding author: Email: lubeeltx@163.com(T. Lu) 
  • Fund Project: This work was funded by the Project of the Natural Science Foundation of Sichuan Province (Nos. 2023NSFSC0070, 2022NSFSC1821), the Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering (No. SUSE652B002), and the Graduate Student Innovation Fundings (No. y2022189)
  • In this paper, notions related to transitivity in autonomous discrete dynamical systems are generalized to non-autonomous discrete dynamical systems. Some sufficient conditions or necessary conditions of transitive were given. Then, it is obtained that the mapping sequence $f_{1, \infty}=(f_{1}, f_{2}, \cdots)$ is $\mathcal{P}$-chaotic if and only if the mapping sequence $f_{n, \infty}=(f_{n}, f_{n+1}, \cdots), \forall n \in \mathbb{N}$ $(\mathbb{N}=\{1, 2, \cdots\})$ would also be $\mathcal{P}$-chaotic. Where $\mathcal{P}$-chaos represents one of the following six properties: transitive, mixing, weakly mixing, syndetically transitive, strongly transitive, and $\mathbb{Z}$-transitive. Finally, an example is given to show that the condition ‘the space has no isolated point’ cannot be removed, and a $\mathcal{P}$-chaotic non-autonomous mapping sequence is provided.

    MSC: 37B40, 37D45, 54H20
  • 加载中
  • [1] S. Ahmadi, X. Wu and G. Chen, Topological chain and shadowing properties of dynamical systems on uniform spaces, Topol. Appl., 2020, 275, 107153. doi: 10.1016/j.topol.2020.107153

    CrossRef Google Scholar

    [2] W. Anwar, T. Lu and X. Yang, Sensitivity of iterated function systems under the product operation, Results Math., 2022, 77, 185. doi: 10.1007/s00025-022-01669-6

    CrossRef Google Scholar

    [3] J. Banks, Regular periodic decompositions for topologically transitive maps, Ergod. Theor. Dyn. Syst., 1997, 17, 505–529. doi: 10.1017/S0143385797069885

    CrossRef Google Scholar

    [4] G. Birkhoff, Dynamical Systems, American Mathematical Society, Washington, 2008.

    Google Scholar

    [5] L. Block and D. Ledis, Topological conjugacy, transitivity and patterns, Topol. Appl., 2014, 167, 53–61. doi: 10.1016/j.topol.2014.03.003

    CrossRef Google Scholar

    [6] Z. Chen, J. Li and L. Jie, On multi-transitivity with respect to a vector, Sci. China Math., 2014, 57, 1639–1648. doi: 10.1007/s11425-014-4797-z

    CrossRef Google Scholar

    [7] M. Javaheri, Hypercyclic and topologically transitive semigroups of composition operators, Topol. Appl., 2014, 164, 105–112. doi: 10.1016/j.topol.2013.12.004

    CrossRef Google Scholar

    [8] D. Kwietniak and P. Oprocha, On weak mixing, minimality and weak disjointness of all iterates, Ergod. Theor. Dyn. Syst., 2012, 32, 1661–1672. doi: 10.1017/S0143385711000599

    CrossRef Google Scholar

    [9] J. Li, C. Liu, S. Tu and T. Yu, Sequence entropy tuples and mean sensitive tuples, Ergod. Theor. Dyn. Syst., 2024, 44, 184–203. doi: 10.1017/etds.2023.5

    CrossRef Google Scholar

    [10] J. Li, X. Ye and T. Yu, Equicontinuity and sensitivity in mean forms, J. Dyn. Differ. Equ., 2022, 34, 133–154. doi: 10.1007/s10884-021-09945-9

    CrossRef Google Scholar

    [11] J. Li, X. Ye and T. Yu, Mean equicontinuity, complexity and applications, Discrete contin. dyn. syst., 2021, 41, 359–393. doi: 10.3934/dcds.2020167

    CrossRef Google Scholar

    [12] R. Li, Y. Zhao and H. Wang, Stronger forms of transitivity and sensitivity for nonautonomous discrete dynamical systems and Furstenberg families, J. Dyn. Control Syst., 2020, 26, 109–126. doi: 10.1007/s10883-019-09437-6

    CrossRef Google Scholar

    [13] G. Liao, L. Wang and Y. Zhang, Transitivity, mixing and chaos for a class of set-valued mappings, Sci. China Math., 2006, 49, 1–8. doi: 10.1007/s11425-004-5234-5

    CrossRef Google Scholar

    [14] J. Pi, T. Lu and Y. Chen, Collective sensitivity and collective accessibility of non-autonomous discrete dynamical systems, Fractal. Fract., 2022, 6, 535. doi: 10.3390/fractalfract6100535

    CrossRef Google Scholar

    [15] J. Pi, T. Lu and Y. Xue, Transitivity and shadowing properties of non-autonomous discrete dynamical systems, Int. J. Bifurcat. Chaos, 2022, 32, 2250246. doi: 10.1142/S0218127422502467

    CrossRef Google Scholar

    [16] H. Shao, Y. Shi and H. Zhu, Estimations of topological entropy for nonautonomous discrete systems, J. Differ. Equ. Appl., 2016, 22, 474–484. doi: 10.1080/10236198.2015.1107055

    CrossRef Google Scholar

    [17] R. Thakur and R. Das, Transitivity and sensitivity of iterated function systems via Furstenberg families, Aequationes math., 2020, 94, 1123–1140. doi: 10.1007/s00010-020-00757-8

    CrossRef Google Scholar

    [18] R. Vasisht and R. Das, Generalizations of expansiveness in non-autonomous discrete systems, B. Iran. Math. Soc., 2022, 48, 417–433. doi: 10.1007/s41980-020-00525-z

    CrossRef Google Scholar

    [19] X. Wu, X. Ding, T. Lu and J. Wang, Topological dynamics of Zadeh's extension on the space of upper semi-continuous fuzzy sets, Int. J. Bifurcat. Chaos, 2017, 27, 1750165. doi: 10.1142/S0218127417501656

    CrossRef Google Scholar

    [20] X. Xie and J. Yin, On the eventual shadowing property and eventually shadowable point of set-valued dynamical systems, Acta. Math. Sin., 2022, 38, 1105–1115. doi: 10.1007/s10114-022-1041-6

    CrossRef Google Scholar

    [21] X. Yang, T. Lu and W. Anwar, Chaotic properties of a class of coupled mapping lattice induced by fuzzy mapping in non-autonomous discrete systems, Chaos Soliton Fract., 2021, 148, 110979. doi: 10.1016/j.chaos.2021.110979

    CrossRef Google Scholar

    [22] X. Yang, T. Lu, J. Pi and Y. Jiang, On shadowing system generated by a uniformly convergent mappings sequence, J. Dyn. Control Syst., 2022, 28, 238.

    Google Scholar

Figures(1)

Article Metrics

Article views(1045) PDF downloads(341) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint