2024 Volume 14 Issue 3
Article Contents

Wenjing Liu, Yancong Xu, Libin Rong. PREDATOR DISCRIMINATION PROMOTES THE COEXISTENCE OF PREY AND PREDATOR[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1579-1597. doi: 10.11948/20230301
Citation: Wenjing Liu, Yancong Xu, Libin Rong. PREDATOR DISCRIMINATION PROMOTES THE COEXISTENCE OF PREY AND PREDATOR[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1579-1597. doi: 10.11948/20230301

PREDATOR DISCRIMINATION PROMOTES THE COEXISTENCE OF PREY AND PREDATOR

  • The predator discrimination of prey may affect the density of both prey and predator populations, which, in turn, could influence the coexistence of discriminated prey species. This paper investigates the dynamics of a three-dimensional predator-prey model, which includes unobvious predator discrimination of prey, using a dynamical system approach. We study the existence, local and global stability of equilibria and further discuss the presence and conditions of forward bifurcation in the system. Finally, numerical simulations are performed to illustrate the theoretical results. The findings suggest that prey diversity favors predator discrimination of prey and enhances the coexistence of all species.

    MSC: 37G05, 37G10, 37G15, 37N25
  • 加载中
  • [1] R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 2001, 257(1), 206–222. doi: 10.1006/jmaa.2000.7343

    CrossRef Google Scholar

    [2] P. Chesson, Mechanisms of maintenance of species diversity, Annual review of Ecology and Systematics, 2000, 31(1), 343–366. doi: 10.1146/annurev.ecolsys.31.1.343

    CrossRef Google Scholar

    [3] J. H. P. Dawes and M. O. Souza, A derivation of Holling's type Ⅰ, Ⅱ and Ⅲ functional responses in predator-prey systems, Journal of Theoretical Biology, 2013, 327, 11–22. doi: 10.1016/j.jtbi.2013.02.017

    CrossRef Google Scholar

    [4] K. P. Hadeler and C. Castillo-Chavez, A core group model for disease transmission, Mathematical Biosciences, 1995, 128, 41-55.

    Google Scholar

    [5] E. D. Houde and R. C. Schekter, Feeding by marine fish larvae: developmental and functional responses, Environmental Biology of Fishes, 1980, 5, 315–334. doi: 10.1007/BF00005186

    CrossRef Google Scholar

    [6] S. B. Hsu, S. P. Hubbell and P. Waltman, A contribution to the theory of competing predators, Ecological Monographs, 1978, 48(3), 337–349. doi: 10.2307/2937235

    CrossRef Google Scholar

    [7] S. B. Hsu, S. P. Hubbell and P. Waltman, Competing predators, SIAM Journal on Applied Mathematics, 1978, 35(4), 617–625. doi: 10.1137/0135051

    CrossRef Google Scholar

    [8] S. B. Hsu, T. W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, Journal of Mathematical Biology, 2001, 42, 489–506. doi: 10.1007/s002850100079

    CrossRef Google Scholar

    [9] G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response, Applied Mathematics Letters, 2009, 22(11), 1690–1693. doi: 10.1016/j.aml.2009.06.004

    CrossRef Google Scholar

    [10] J. Huang, S. Ruan and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, Journal of Differential Equations, 2014, 257(6), 1721–1752. doi: 10.1016/j.jde.2014.04.024

    CrossRef Google Scholar

    [11] G. Iwashita, A. Yamawo and M. Kondoh, Predator discrimination of prey promotes the predator-mediated coexistence of prey species, Royal Society Open Science, 2022, 9(12), 220859. doi: 10.1098/rsos.220859

    CrossRef Google Scholar

    [12] W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, Journal of Differential Equations, 2006, 231(2), 534–550. doi: 10.1016/j.jde.2006.08.001

    CrossRef Google Scholar

    [13] A. L. Koch, Competitive coexistence of two predators utilizing the same prey under constant environmental conditions, Journal of Theoretical Biology, 1974, 44(2), 387–395. doi: 10.1016/0022-5193(74)90169-6

    CrossRef Google Scholar

    [14] V. Krivan and O. J. Schmitz, Adaptive foraging and flexible food web topology, Evolutionary Ecology Research, 2003, 5(5), 623–652.

    Google Scholar

    [15] Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 1998, 36, 389–406. doi: 10.1007/s002850050105

    CrossRef Google Scholar

    [16] Y. Kuznetsov, Elements of Applied Bifurcation Theory, New York: Springer-Verlag, 1995.

    Google Scholar

    [17] Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system with generalised Holling type Ⅲ functional response, Journal of Dynamics and Differential Equations, 2008, 20(3), 535–571. doi: 10.1007/s10884-008-9102-9

    CrossRef Google Scholar

    [18] Q. Li, L. Zhang and P. Zhou, Global bifurcation for a class of Lotka-Volterra competitive systems, Journal of Nonlinear Modeling and Analysis, 2023, 5, 720–739.

    Google Scholar

    [19] X. Q. Lin, Y. C. Xu, D. Z. Gao and G. H. Fan, Bifurcation and overexploitation in Rosenzweig-MacArthur model, Discrete and Continuous Dynamical Systems-B, 2023, 28(1), 690–706. doi: 10.3934/dcdsb.2022094

    CrossRef Google Scholar

    [20] M. Liu, C. Z. Bai and Y. Jin, Population dynamical behavior of a two-predator-one-prey stochastic model with time delay, Discrete and Continuous Dynamical Systems, 2017, 37(5), 2513. doi: 10.3934/dcds.2017108

    CrossRef Google Scholar

    [21] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.

    Google Scholar

    [22] R. J. Pakeman, Multivariate identification of plant functional response and effect traits in an agricultural landscape, Ecology, 2011, 92(6), 1353–1365. doi: 10.1890/10-1728.1

    CrossRef Google Scholar

    [23] L. A. Real, The kinetics of functional response, The American Naturalist, 1977, 111(978), 289–300. doi: 10.1086/283161

    CrossRef Google Scholar

    [24] G. T. Skalski and J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type Ⅱ model, Ecology, 2001, 82(11), 3083–3092. doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2

    CrossRef Google Scholar

    [25] Y. V. Tyutyunov and L. I. Titova, Ratio-dependence in predator-prey systems as an edge and basic minimal model of predator interference, Frontiers in Ecology and Evolution, 2021, 9, 725041. doi: 10.3389/fevo.2021.725041

    CrossRef Google Scholar

    [26] R. K. Upadhyay and S. N. Raw, Complex dynamics of a three species food-chain model with Holling type Ⅳ functional response, Nonlinear Analysis: Modelling and Control, 2011, 16(3), 553–374. doi: 10.15388/NA.16.3.14098

    CrossRef Google Scholar

    [27] R. R. Vance, Predation and resource partitioning in one-predator–two-prey model communities, The American Naturalist, 1978, 112(987), 797–813. doi: 10.1086/283324

    CrossRef Google Scholar

    [28] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 1926, 118(2972), 558–560. doi: 10.1038/118558a0

    CrossRef Google Scholar

    [29] J. P. Wang and M. X. Wang, Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis, Z. Angew. Math. Phys., 2018, 69, 1–24. doi: 10.1007/s00033-017-0895-4

    CrossRef Google Scholar

    [30] Q. Wang, B. X. Dai and Y. M. Chen, Multiple periodic solutions of an impulsive predator-prey model with Holling-type Ⅳ functional response, Mathematical and Computer Modelling, 2009, 49(9–10), 1829–1836. doi: 10.1016/j.mcm.2008.09.008

    CrossRef Google Scholar

    [31] T. Wen, Y. C. Xu, M. He and L. B. Rong, Modelling the dynamics in a predator-prey system with Allee effects and anti-predator behavior, Qual. Theory Dyn. Syst, 2023, 22(116), 1–50.

    Google Scholar

    [32] S. Wiggins and D. S. Mazel, Introduction to Applied Nonlinear Dynamical Systems and Chaos, American Institute of Physics, 2013.

    Google Scholar

    [33] Y. C. Xu, L. J. Wei, X. Y. Jiang and Z. R. Zhu, Complex dynamics of a SIRS epidemic model with the influence of hospital bed number, Discrete and Continuous Dynamical Systems-B, 2021, 26(12), 6229–6252. doi: 10.3934/dcdsb.2021016

    CrossRef Google Scholar

    [34] Y. Yang, F. W. Meng and Y. C. Xu, Global bifurcation analysis in a predator-prey system with simplified Holling Ⅳ functional response and antipredator behavior, Mathematical Methods in the Applied Sciences, 2023, 46(5), 6135–6153. doi: 10.1002/mma.8896

    CrossRef Google Scholar

    [35] A. Zegeling, H. L. Wang and G. Z. Zhu, Uniqueness of limit cycles in a predator-prey model with sigmoid functional response, Journal of Nonlinear Modeling and Analysis, 2023, 5, 790–802.

    Google Scholar

    [36] Z. R. Zhu, R. C. Wu, Y. Yang and Y. C. Xu, Modelling HIV dynamics with cell-to-cell transmission and CTL response, Mathematical Methods in the Applied Sciences, 2023, 46(6), 6506–6528. doi: 10.1002/mma.8921

    CrossRef Google Scholar

Figures(4)  /  Tables(1)

Article Metrics

Article views(1282) PDF downloads(371) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint