2024 Volume 14 Issue 3
Article Contents

Shulin Zhang, Hua Jin. EXISTENCE AND UNIQUENESS OF CONSTRAINED MINIMIZERS FOR FRACTIONAL KIRCHHOFF TYPE PROBLEMS IN HIGH DIMENSIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1598-1612. doi: 10.11948/20230311
Citation: Shulin Zhang, Hua Jin. EXISTENCE AND UNIQUENESS OF CONSTRAINED MINIMIZERS FOR FRACTIONAL KIRCHHOFF TYPE PROBLEMS IN HIGH DIMENSIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1598-1612. doi: 10.11948/20230311

EXISTENCE AND UNIQUENESS OF CONSTRAINED MINIMIZERS FOR FRACTIONAL KIRCHHOFF TYPE PROBLEMS IN HIGH DIMENSIONS

  • Author Bio: Email: huajin@cumt.edu.cn (H. Jin)
  • Corresponding author: Email: zhangshulin0228@126.com(S. Zhang) 
  • Fund Project: The authors were supported by the Fundamental Research Funds for the Central Universities (2019XKQYMS90)
  • In this paper, we investigate the existence and uniqueness of solutions with prescribed $L^{2}$-norm for a class of fractional Kirchhoff type problems. Firstly, we prove the existence of global constraint minimizers for the exponent $2 < p<2 + \frac{4\theta s}{N}$. Secondly, we obtain the existence of solutions with prescribed $L^{2}$-norm for the exponent $2 + \frac{4\theta s}{N}\leq p< 2^{*}_{s}$ by mountain pass theorem. Furthermore, all these solutions are unique up to translations and our methods only rely on scaling transformations and simply energy estimates. We point out that these obtained results extend the previous results for $0<s<1$ and $\theta=2$ or $s=1$ and $\theta=2$ in low dimensions. To the best of our knowledge, with respect to the $L^{2}$-subcritical or $L^{2}$-critical constrained variational problem for fractional Kirchhoff type problems, the critical exponent $p=2 + \frac{4\theta s}{N}$ is properly established for the first time.

    MSC: 35J20, 35J60
  • 加载中
  • [1] T. Bartsch and S. de Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. der Math., 2013, 100, 75–83. doi: 10.1007/s00013-012-0468-x

    CrossRef Google Scholar

    [2] T. Bartsch, L. Jeanjean and N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on $\mathbb{R}.{3}$, J. Math. Pur. Appl., 2016, 106(4), 583–614. doi: 10.1016/j.matpur.2016.03.004

    CrossRef Google Scholar

    [3] T. Bartsch, Y. Liu and Z. Liu, Normalized solutions for a class of nonlinear Choquard equations, SN Partial Differ. Equ. Appl., 2020, 34, 1–25.

    Google Scholar

    [4] T. Bartsch and N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var., 2019, 58(1), 22. doi: 10.1007/s00526-018-1476-x

    CrossRef Google Scholar

    [5] J. Bellazzini, L. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 2013, 107(2), 303–339. doi: 10.1112/plms/pds072

    CrossRef Google Scholar

    [6] D. Bonheure, J. Casteras, T. Gou and L. Jeanjean, Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime, Trans. Am. Math. Soc., 2019, 372(3), 2167–2212. doi: 10.1090/tran/7769

    CrossRef Google Scholar

    [7] L. Cai and F. Zhang, Normalized solutions of mass supercritical Kirchhoff equation with potential, J. Geom. Anal., 2023, 33(3), 107. doi: 10.1007/s12220-022-01148-y

    CrossRef Google Scholar

    [8] S. Chen, V. D. Radulescu and X. Tang, Normalized solutions of nonautonomous Kirchhoff equations: Sub-and super-critical cases, Appl. Math. Optim., 2021, 84(1), 773–806. doi: 10.1007/s00245-020-09661-8

    CrossRef Google Scholar

    [9] W. Chen and X. Huang, The existence of normalized solutions for a fractional Kirchhoff-type equation with doubly critical exponents, Z. Angew. Math. Phys., 2022, 73(6), 226. doi: 10.1007/s00033-022-01866-x

    CrossRef Google Scholar

    [10] M. Du, L. Tian and J. Wang, Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, Proc. Roy. Soc. Edinburgh Sect. A, 2019, 149(3), 617–653. doi: 10.1017/prm.2018.41

    CrossRef Google Scholar

    [11] X. Feng, H. Liu and Z. Zhang, Normalized solutions for Kirchhoff type equations with combined nonlinearities: The Sobolev critical case, Disc. Cont. Dyna. Syst., 2023, 43(8), 2935–2972. doi: 10.3934/dcds.2023035

    CrossRef Google Scholar

    [12] X. He, V. Rădulescu and W. Zou, Normalized ground states for the critical fractional Choquard equation with a local perturbation, J. Geom. Anal., 2022, 32, 252. doi: 10.1007/s12220-022-00980-6

    CrossRef Google Scholar

    [13] T. Hu and C. Tang, Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations, Calc. Var., 2021, 60, 210. doi: 10.1007/s00526-021-02018-1

    CrossRef Google Scholar

    [14] X. Huang and Y. Zhang, Existence and uniqueness of minimizers for $L.{2}$-constrained problems related to fractional Kirchhoff equation, Math. Models Methods Appl. Sci., 2020, 43(15), 8763–8775. doi: 10.1002/mma.6543

    CrossRef Google Scholar

    [15] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 1997, 28(10), 1633–1659. doi: 10.1016/S0362-546X(96)00021-1

    CrossRef Google Scholar

    [16] L. Jeanjean and T. Luo, Sharp nonexistence results of prescribed $L.{2}$-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 2013, 64, 937–954. doi: 10.1007/s00033-012-0272-2

    CrossRef Google Scholar

    [17] G. Li and X. Luo, Normalized solutions for the Chern-Simons-Schrödinger equation in $\mathbb{R}.{2}$, Ann. Acad. Sci. Fenn. Math., 2017, 42, 405–428. doi: 10.5186/aasfm.2017.4223

    CrossRef Google Scholar

    [18] M. Li, J. He, H. Xu and M. Yang, Ground state solution for a critical fractional Kirchhoff equation with $L_{2}$-constraint, Bull. Sci. Math., 2022, 179, 103170. doi: 10.1016/j.bulsci.2022.103170

    CrossRef Google Scholar

    [19] Q. Li, J. Nie and W. Zhang, Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation, J. Geom. Anal., 2023, 33(4), 126. doi: 10.1007/s12220-022-01171-z

    CrossRef Google Scholar

    [20] J. L. Lions, On some quations in boundary value problems of mathematical physics, North-Holland Math. Stud., 1978, 30, 284–346.

    Google Scholar

    [21] L. Liu, H. Chen and J. Yang, Normalized solutions to the fractional Kirchhoff equations with a perturbation, Appl. Anal., 2023, 102(4), 1229–1249. doi: 10.1080/00036811.2021.1979222

    CrossRef Google Scholar

    [22] M. Liu and Z. Tang, Multiplicity and concentration of solutions for a fractional Schrödinger equation via Nehari method and pseudo-index theory, J. Math. Phys., 2019, 60, 053502. doi: 10.1063/1.5051462

    CrossRef Google Scholar

    [23] Z. Liu, Multiple normalized solutions for Choquard equations involving Kirchhoff type perturbation, Topol. Meth. Nonlinear Anal., 2019, 54(1), 297–319.

    Google Scholar

    [24] H. Luo and Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var., 2020, 59, 143. doi: 10.1007/s00526-020-01814-5

    CrossRef Google Scholar

    [25] Q. Lou, Y. Qin and F. Liu, The existence of constrained minimizers related to fractional $p$-Laplacian equations, Topol. Meth. Nonlinear Anal., 2021, 58(2), 657–676.

    Google Scholar

    [26] Q. Lou, L. Zhang and G. Dai, Existence and concentration of positive solutions for non-autonomous Schrödinger-Poisson systems, Complex Var. Ellip. Equ., 2020, 65(10), 1672–1697. doi: 10.1080/17476933.2019.1680651

    CrossRef Google Scholar

    [27] S. I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb., 1975, 96, 152–168.

    Google Scholar

    [28] L. Wang, H. Chen and L. Yang, Ground state solutions for fractional $p$-Kirchhoff equation, Electron. J. Differential Equations, 2022, 61, 1–14.

    Google Scholar

    [29] J. Wei and Y. Wu, Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, J. Func. Anal., 2022, 283(6), 109574. doi: 10.1016/j.jfa.2022.109574

    CrossRef Google Scholar

    [30] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 1983, 87, 567–576. doi: 10.1007/BF01208265

    CrossRef Google Scholar

    [31] X. Yang, X. Tang and B. Cheng, Multiple radial and nonradial normalized solutions for a quasilinear Schrödinger equation, J. Math. Anal. Appl., 2021, 501(2), 125122. doi: 10.1016/j.jmaa.2021.125122

    CrossRef Google Scholar

    [32] S. Yao, H. Chen, V. Rădulescu and J. Sun, Normalized solutions for lower critical choquard equations with critical Sobolev perturbation, SIAM J. Math. Anal., 2022, 54(3), 3696–3723. doi: 10.1137/21M1463136

    CrossRef Google Scholar

    [33] H. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Models Methods Appl. Sci., 2015, 38(13), 2663–2679. doi: 10.1002/mma.3247

    CrossRef Google Scholar

    [34] H. Ye, The existence of normalized solutions for $L.{2}$-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys., 2015, 66(4), 1483–1497. doi: 10.1007/s00033-014-0474-x

    CrossRef Google Scholar

    [35] H. Ye and Y. Yu, The existence of normalized solutions for $L.{2}$-critical quasilinear Schrödinger equations, J. Math. Anal. Appl., 2021, 497(1), 124839. doi: 10.1016/j.jmaa.2020.124839

    CrossRef Google Scholar

    [36] X. Zeng, J. Zhang, Y. Zhang and X. Zhong, Positive normalized solution to the Kirchhoff equation with general nonlinearities, 2021. DOI: 10.48550/arXiv.2112.10293.

    Google Scholar

    [37] X. Zeng and Y. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 2017, 74, 52–59. doi: 10.1016/j.aml.2017.05.012

    CrossRef Google Scholar

    [38] P. Zhang and Z. Han, Normalized ground states for Kirchhoff equations in $\mathbb{R}.{3}$ with a critical nonlinearity, J. Math. Phys., 2022, 63, 021505. doi: 10.1063/5.0067520

    CrossRef Google Scholar

    [39] X. Zhu, F. Li and Z. Liang, Normalized solutions of a transmission problem of Kirchhoff type, Calc. Var., 2021, 60, 192. doi: 10.1007/s00526-021-02064-9

    CrossRef Google Scholar

Article Metrics

Article views(1380) PDF downloads(359) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint