2024 Volume 14 Issue 3
Article Contents

Nemat Nyamoradi, Bashir Ahmad. SOLVABILITY OF HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS ON A HALF-LINE WITH LOGARITHMIC TYPE INITIAL DATA[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1613-1624. doi: 10.11948/20230312
Citation: Nemat Nyamoradi, Bashir Ahmad. SOLVABILITY OF HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS ON A HALF-LINE WITH LOGARITHMIC TYPE INITIAL DATA[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1613-1624. doi: 10.11948/20230312

SOLVABILITY OF HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS ON A HALF-LINE WITH LOGARITHMIC TYPE INITIAL DATA

  • In this paper, by using the Leray-Schauder nonlinear alternative and contraction mapping principle, we study the existence and uniqueness of solutions to a new class of Hadamard fractional differential equations on a half-line supplemented with logarithmic type initial conditions.

    MSC: 47H10, 26A33, 34A08
  • 加载中
  • [1] R. P. Agarwal, M. Meehan and D. Oregan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001.

    Google Scholar

    [2] B. Ahmad, R. P. Agarwal, A. Broom and A. Alsaedi, On a coupled integro-differential system involving mixed fractional derivatives and integrals of different orders, Miskolc Math. Notes Acta Mathematica Scientia. Series B, English Edition, 2021, 41(4), 1366–1384.

    Google Scholar

    [3] B. Ahmad, A. Alsaedi, S. K. Ntouyas and J. Tariboon, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham, 2017.

    Google Scholar

    [4] T. S. Cerdik and F. Y. Deren, New results for higher-order Hadamard-type fractional differential equations on the half-line, Mathematical Methods in the Applied Sciences, 2021. DOI: 10.1002/mma.7926.

    CrossRef Google Scholar

    [5] A. Granas, R. B. Guenther and J. W. Lee, Some general existence principle in the Carathéodory theory of nonlinear systems, Journal de Mathématiques Pures et Appliquées, 1991, 70, 153–196.

    Google Scholar

    [6] J. Hadamard, Essai sur l'étude des fonctions donnees par leur developpment de Taylor, Journal de Mathématiques Pures et Appliquées, 1892, 8, 101–186.

    Google Scholar

    [7] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    Google Scholar

    [8] S. Liang and J. Zhang, Existence of three positive solutions of m-point boundary value problems for some nonlinear fractional differential equations on an infinite interval, Computers Mathematics with Applications, 2011, 61, 3343–3354. doi: 10.1016/j.camwa.2011.04.018

    CrossRef Google Scholar

    [9] S. Liang and J. Zhang, Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval, Mathematical and Computer Modelling, 2011, 54, 1334–1346. doi: 10.1016/j.mcm.2011.04.004

    CrossRef Google Scholar

    [10] Y. Liu, Existence and uniqueness of solutions for a class of initial value problems of fractional differential systems on half lines, Bulletin des Sciences Mathématiques, 2013, 137, 1048–1071. doi: 10.1016/j.bulsci.2013.03.004

    CrossRef Google Scholar

    [11] Y. Liu, B. Ahmad and R. P. Agarwal, Existence of solutions for a coupled system of nonlinear fractional differential equations with fractional boundary conditions on the half-line, Advances in Difference Equations, 2013, 46(2013), 19.

    Google Scholar

    [12] P. Thiramanus, S. K. Ntouyas and J. Tariboon, Positive solutions for Hadamard fractional differential equations on infinite domain, Advances in Difference Equations, 2016, (2016), 118.

    Google Scholar

    [13] G. Wang, Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval, Applied Mathematics Letters, 2015, 47, 1–7. doi: 10.1016/j.aml.2015.03.003

    CrossRef Google Scholar

    [14] G. Wang, K. Pei, R. P. Agarwal, L. Zhang and B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, Journal of Computational and Applied Mathematics, 2018, 343, 230–239. doi: 10.1016/j.cam.2018.04.062

    CrossRef Google Scholar

    [15] C. Zhai and J. Ren, A coupled system of fractional differential equations on the half-line, Boundary Value Problems, 2019, 117(2019), 22.

    Google Scholar

    [16] L. Zhang, B. Ahmad, G. Wang and R. P. Agarwal, Nonlinear fractional integro-differential equations on unbounded domains in a Banach space, Journal of Computational and Applied Mathematics, 2013, 249, 51–56.

    Google Scholar

Article Metrics

Article views(1063) PDF downloads(372) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint