Citation: | Lan Xu, Cong-Cong Qu. INVERSE VARIATIONAL PRINCIPLES FOR TOPOLOGICAL PRESSURES ON MEASURES[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 1046-1059. doi: 10.11948/20230302 |
In this paper, we generalize the various types of topological pressures and measure-theoretical pressures for non-additive continuous potential with tempered distortion. We show inverse variational principles of measures for this non-additive topological pressures. Furthermore, we apply the inverse variational principles for topological pressures on measures to give the estimate of Hausdorff dimension of measures supported on average conformal repellers.
[1] | R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Transactions of the American Mathematical Society, 1965, 114(2), 309-319. doi: 10.1090/S0002-9947-1965-0175106-9 |
[2] | J. Ban, Y. Cao and H. Hu, The dimension of a non-conformal repeller and an average conformal repeller, Trans. Amer. Math. Soc., 2010, 362(2), 727-751. |
[3] | R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Transactions of the American Mathematical Society, 1971, 153, 401-414. doi: 10.1090/S0002-9947-1971-0274707-X |
[4] | R. Bowen, Topological entropy for noncompact sets, Transactions of the American Mathematical Society, 1973, 184, 125-136. doi: 10.1090/S0002-9947-1973-0338317-X |
[5] | M. Brin and A. Katok, On Local Entropy, in Geometric Dynamics (Rio De Janeiro, 1981), J. Palis ed., Lect. Notes in Math. 1007, Springer, Berlin, 1983. |
[6] | Y. Cao, Dimension spectrum of asymptotically additive potentials for C1 average conformal repellers, Nonlinearity, 2013, 26, 2441-2468. doi: 10.1088/0951-7715/26/9/2441 |
[7] | E. I. Dinaburg, A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR, 1970, 190, 19-22. |
[8] | D. J. Feng and W. Huang, Variational principles for topological entropies of subsets, Journal of Functional Analysis, 2012, 263(8), 2228-2254. doi: 10.1016/j.jfa.2012.07.010 |
[9] | A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 1980, 51(1), 137-173. doi: 10.1007/BF02684777 |
[10] | A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk SSSR, 1958, 951(5), 861-864. |
[11] | Y. B. Pesin and B. S. Pitskel, Topological pressure and the variational principle for noncompact sets, Functional Analysis and Its Applications, 1984, 18(4), 307-318. doi: 10.1007/BF01083692 |
[12] | Y. B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, University of Chicago Press, Chicago, 1997. |
[13] | D. Ruelle, Statistical mechanics on a compact set with zv action satisfying expansiveness and specification, Transactions of the American Mathematical Society, 1973, 185, 237-251. |
[14] | X. Tang, W. C. Cheng and Y. Zhao, Variational principle for topological pressures on subsets, Journal of Mathematical Analysis & Applications, 2015, 424(2), 1272-1285. |
[15] | P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982. |
[16] | C. Wang and E. Chen, Variational principles for BS dimension of subsets, Dynamical Systems, 2012, 27(3), 359-385. doi: 10.1080/14689367.2012.702419 |
[17] | T. Wang, Some notes on topological and measure-theoretic entropy, Qualitative Theory of Dynamical Systems, 2021, 20(1), 1-13. doi: 10.1007/s12346-020-00443-9 |
[18] | X. F. Zhong and Z. J. Chen, Variational principle for topological pressure on subsets, Nonlinearity, 2023, 36(5), 1168-1191. |