Citation: | Yongchang Wei, Jinxiang Zhan, Jinhai Guo. ASYMPTOTIC BEHAVIORS OF A HEROIN EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE INFLUENCED BY STOCHASTIC PERTURBATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 1060-1077. doi: 10.11948/20230323 |
In this paper, the dynamical behaviors of a stochastic heroin epidemic model with Lévy noises is investigated. First, we prove that this system has a unique global positive solution. Second, we derive the conditions of persistence in the mean and asymptotic stability in mean square using the Lyapunov and inequalities technique, and establish a criterion for positive recurrence. The results show that asymptotic behaviors are closely related to the Lévy measure. Finally, numerical simulations are used to illustrate the theoretical results.
[1] | Epidemiologic Trends in Drug Abuse-Proceedings of the Community Epidemiology Work Group, National Institute on Drug Abuse. Bethesda, MD: National Institute on Drug Abuse, 2012. |
[2] |
World, Drug Problem Report, 2019. |
[3] | K. Akdim, A. Ez-Zetouni, J. Danane and K. Allali, Stochastic viral infection model with lytic and nonlytic immune responses driven by Lévy noise, Physica A, 2020, 549, 124367. doi: 10.1016/j.physa.2020.124367 |
[4] | R. Anderson and R. May, Population biology of infectious diseases: Part I, Nature, 1979, 280, 361-367. doi: 10.1038/280361a0 |
[5] | T. Britton and D. Lindenstrand, Epidemic modelling: Aspects where stochastic epidemic models: A survey, Math. Biosci, 2010, 222, 109-116. |
[6] | M. Carletti, On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment, Math. Biosci, 2002, 175, 117-131. doi: 10.1016/S0025-5564(01)00089-X |
[7] | B. Fang, X. Li, M. Martcheva and L. Cai, Global stability for a heroin model with two distributed delays, Discrete Contin. Dyn. Syst. Ser. B, 2014, 19, 715-733. |
[8] | Q. Ge, G. Ji, J. Xu and X. Fan, Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps, Physica A, 2016, 462, 1120-1127. doi: 10.1016/j.physa.2016.06.116 |
[9] | A. Gray, D. Greenhalgh, L. Hu, et al, A stochastic differnetial equation SIS epidemic model, SIAM J. Appl. Math, 2011, 71, 876-902. doi: 10.1137/10081856X |
[10] | L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 2005, 217, 26-53. doi: 10.1016/j.jde.2005.06.017 |
[11] | M. Jovanović and V. Vujović, Stability of stochastic heroin model with two distributed delays, Discret Contin. Dyn. Syst. Ser. B, 2020, 25, 635-642. |
[12] | Y. Lin and D. Jiang, Threshold behavior in a stochastic SIS epidemic model with standard incidence, J. Dyn. Diff. Equ, 2014, 26, 1079-1094. doi: 10.1007/s10884-014-9408-8 |
[13] | P. Lipster, A strong law of large numbers for local martingales, Stachastics, 1980, 3, 217-218. doi: 10.1080/17442508008833146 |
[14] | J. Liu and S. Wang, Dynamics in a stochastic heroin model with seasonal variation, Physica A, 2019, 532, 121873. doi: 10.1016/j.physa.2019.121873 |
[15] | Q. Liu, D. Jiang, N. Shi, T. Hayat and B. Ahmad, Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence, Physica A, 2017, 476, 58-69. doi: 10.1016/j.physa.2017.02.028 |
[16] | S. Liu, L. Zhang and Y. Xing, Dynamics of a stochastic heroin epidemic model, J. Comput. Appl. Math, 2019, 351, 260-269. doi: 10.1016/j.cam.2018.11.005 |
[17] | M. Lizana and J. Rivero, Multiparametric bifurcations for a model in epidemiology, J. Math. Biol, 1996, 35, 21-36. doi: 10.1007/s002850050040260-9 |
[18] | M. Ma, S. Liu, and J. Li, Bifurcation of a heroin model with nonlinear incidence rate, Nonlinear Dyn, 2017, 88, 555-565. doi: 10.1007/s11071-016-3260-9 |
[19] | D. Mackintosh and G. Stewart, A mathematical model of a heroin epidemic: Implications for control policies, J. Epidemiol. Commun. H, 1979, 33, 299-304. doi: 10.1136/jech.33.4.299 |
[20] | X. Mao, Stochastic Differential Equations and their Applications, Chinester, Horwood, 2007. |
[21] | X. Mao, G. Marion and E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stochastic Process Appl, 2002, 97, 95-110. doi: 10.1016/S0304-4149(01)00126-0 |
[22] | X. Mu, Q. Zhang and L. Rong, Optimal vaccination strategy for an SIRS model with imprecise parameters and Lévy noise, J. Frank. I, 2019, 356, 11385-11413. doi: 10.1016/j.jfranklin.2019.03.043 |
[23] | G. Mulone and B. Straughan, A note on heroin epidemics, Math. Biosci, 2009, 218, 138-141. doi: 10.1016/j.mbs.2009.01.006 |
[24] | Y. Muroya, H. Li and T. Kuniya, Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates, J. Math. Anal. Appl, 2014, 410, 719-732. doi: 10.1016/j.jmaa.2013.08.024 |
[25] | J. Mushanyu, F. Nyabadza and G. Muchatibaya, On the role of imitation on adolescence methamphetamine abuse dynamics, Acta Biotheor, 2017, 65, 37-61. doi: 10.1007/s10441-016-9302-3 |
[26] | G. Samanta, Dynamic behaviour for a nonautonomous heroin epidemic model with time delay, J. Appl. Math. Comput, 2011, 35, 161-178. doi: 10.1007/s12190-009-0349-z |
[27] | D. Shangguan, Z. Liu, L. Wang, et al, A stochastic epidemic model with infectivity in incubation period and homestead-isolation on the susceptible, J. Appl. Math. Comput, 2021, 67, 785-805. doi: 10.1007/s12190-021-01504-1 |
[28] | F. Wei, H. Jiang and Q. Zhu, Dynamical behaviors of a heroin population model with standard incidence rates between distinct patches, J. Frank. I, 2021, 358, 4994-5013. doi: 10.1016/j.jfranklin.2021.04.024 |
[29] | Y. Wei, Q. Yang and G. Li, Dynamics of the stochastically perturbed Heroin epidemic model under non-degenerate noises, Physica A, 2019, 526, 120914. doi: 10.1016/j.physa.2019.04.150 |
[30] | E. White and C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci, 2007, 208, 312-324. doi: 10.1016/j.mbs.2006.10.008 |
[31] | H. Yang and Z. Jin, Stochastic SIS epidemic model on network with Lévy noise, Stoch. Anal. Appl, 2022, 40, 520-538. doi: 10.1080/07362994.2021.1930051 |
[32] | Q. Yang, D. Jiang, N. Shi, et al, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl, 2012, 388, 248-271. doi: 10.1016/j.jmaa.2011.11.072 |
[33] | G. Zhang, Z. Li and Z. Din, A stochastic SIQR epidemic model with Lévy jumps and three-time delays, Appl. Math. Comput, 2022, 431, 127329. |
[34] | X. Zhang, D. Jiang, T. Hayat and B. Ahmad, Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps, Physica A, 2017, 471, 767-777. doi: 10.1016/j.physa.2016.12.074 |
[35] | B. Zhou, X. Zhang and D. Jiang, Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate, Chaos Soliton Fract, 2020, 137, 109865. doi: 10.1016/j.chaos.2020.109865 |
[36] | X. Zou and K. Wang, Numerical simulations and modeling for stochastic biological systems with jumps, Commun. Nonlinear Sci. Numer. Simulat, 2014, 19, 1557-1568. doi: 10.1016/j.cnsns.2013.09.010 |
The simulation of system (1.3) with
The simulation of system (1.3) with