2024 Volume 14 Issue 2
Article Contents

Jinxia Wu, Qingyan Wu, Yinuo Yang, Pei Dang, Guangzhen Ren. RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS AND DERIVATIVES ON MORREY SPACES AND APPLICATIONS TO ACAUCHY-TYPE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 1078-1096. doi: 10.11948/20230324
Citation: Jinxia Wu, Qingyan Wu, Yinuo Yang, Pei Dang, Guangzhen Ren. RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS AND DERIVATIVES ON MORREY SPACES AND APPLICATIONS TO A CAUCHY-TYPE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 1078-1096. doi: 10.11948/20230324

RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS AND DERIVATIVES ON MORREY SPACES AND APPLICATIONS TO A CAUCHY-TYPE PROBLEM

  • Author Bio: Email: jinxiawu_0531@163.com(J. Wu); Email: pdang@must.edu.mo(P. Dang); Email: gzren@zisu.edu.cn(G. Ren)
  • Corresponding authors: Email: wuqingyan@lyu.edu.cn(Q. Wu);  Email: yangyinuo1995@163.com(Y. Yang) 
  • Fund Project: This work was partially funded by the National Natural Science Foundation of China (Grant Nos. 12171221, 12071197 and 12101564), the Natural Science Foundation of Shandong Province (Grant No. ZR2021MA031), and the National Research Foundation of Korea funded by the Ministry of Education under Grant NRF-2021R1A2C1095739
  • We investigate the boundedness and compactness of Riemann-Liouville integral operators on Morrey spaces, a class of nonseparable function spaces. Instead of adopting dual or maximal viewpoints in integrable function spaces, our approach is based on the compactness of the truncated Riemann-Liouville fractional integrals, leveraging a criterion for strongly pre-compact sets. By constructing a truncated Marchaud fractional derivative function, we characterize the solution to Abel's equation on Morrey spaces. Utilizing the fixed-point theorem, we establish the existence and uniqueness of solutions to a Cauchy-type problem for fractional differential equations. Additionally, we provide an illustrative example to demonstrate the sufficiency of the conditions presented in our main result.

    MSC: 34A08, 42B35, 34B15, 26A33
  • 加载中
  • [1] D. R. Adams and J. Xiao, Morrey spaces in harmonic analysis, Ark. Mat., 2012, 50, 201-230. doi: 10.1007/s11512-010-0134-02019.12.015/0308106010871766210(1014)

    CrossRef Google Scholar

    [2] M. A. Al-Bassam, Some existence theorems on differential equations of generalized order, J. Reine Angew. Math., 1965, 218(1), 70-78.

    Google Scholar

    [3] K. F. Andersen and E. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc., 1988, 308, 547-558. doi: 10.1090/S0002-9947-1988-0930071-4

    CrossRef Google Scholar

    [4] S. Arshad, V. Lupulescu and D. O'Regan, Lp solutions for fractional integral equations, Fract. Calc. Appl. Anal, 2014, 17(1), 259-276. doi: 10.2478/s13540-014-0166-4

    CrossRef Google Scholar

    [5] J. Bastero, M. Milman and F. J. Ruiz, Commutators for the maximal and sharp functions, Proc. Amer. Math. Soc., 2000, 128, 3329-3334. doi: 10.1090/S0002-9939-00-05763-4

    CrossRef Google Scholar

    [6] D. -C. Chang, X. T. Duong, J. Li, W. Wang and Q. Y. Wu, An explicit formula of Cauchy-Szegő kernel for quaternionic Siegel upper half space and applications, Indiana Univ. Math. J., 2021, 70(6), 2451-2477. doi: 10.1512/iumj.2021.70.8732

    CrossRef Google Scholar

    [7] P. Chen, X. T. Duong, J. Li and Q. Y. Wu, Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal., 2019, 277, 1639-1676. doi: 10.1016/j.jfa.2019.05.008

    CrossRef Google Scholar

    [8] Y. P. Chen, Y. Ding and X. X. Wang, Compactness of commutators for singular integrals on Morrey spaces, Canad. J. Math., 2012, 64(2), 257-281. doi: 10.4153/CJM-2011-043-1

    CrossRef Google Scholar

    [9] W. Chen, Z. W. Fu, L. Grafakos and Y. Wu, Fractional Fourier transforms on $L. p$ and applications, Appl. Comput. Harmon. Anal., 2021, 55, 71-96. doi: 10.1016/j.acha.2021.04.004

    CrossRef Google Scholar

    [10] B. H. Dong, Z. W. Fu and J. S. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math., 2018, 61, 1807-1824. doi: 10.1007/s11425-017-9274-0

    CrossRef Google Scholar

    [11] X. T. Duong, M. Lacey, J. Li, B. D. Wick and Q. Y. Wu, Commutators of Cauchy-Szegő type integrals for domains in $\mathbb{C}^n$ with minimal smoothness, Indiana Univ. Math. J., 2021, 70(4), 1505-1541. doi: 10.1512/iumj.2021.70.8573

    CrossRef $\mathbb{C}^n$ with minimal smoothness" target="_blank">Google Scholar

    [12] Z. W. Fu, R. Gong, E. Pozzi and Q. Y. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 2023, 296(5), 1859-1885. doi: 10.1002/mana.202000139

    CrossRef Google Scholar

    [13] Z. W. Fu, L. Grafakos, Y. Lin, Y. Wu and S. H. Yang. Riesz transform associated with the fractional Fourier transform and applications in image edge detection, Appl. Comput. Harmon. Anal., 2023, 66, 211-235. doi: 10.1016/j.acha.2023.05.003

    CrossRef Google Scholar

    [14] Z. W. Fu, X. M. Hou, M. Y. Lee and J. Li, A study of one-sided Singular integral and function space via reproducing formula, J. Geom. Anal., 2023, 33, 289. doi: 10.1007/s12220-023-01340-8

    CrossRef Google Scholar

    [15] Z. W. Fu, S. Z. Lu, Y. Pan and S. G. Shi, Some one-sided estimates for oscillatory singular integrals, Nonlinear Anal., 2014, 108(108), 144-160.

    Google Scholar

    [16] Z. W. Fu, E. Pozzi and Q. Y. Wu, Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions, Front. Math. China, 2021, 16(5), 1269-1296.

    Google Scholar

    [17] R. M. Gong, M. N. Vempati, Q. Y. Wu and P. Z. Xie, Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces, J. Aust. Math. Soc., 2022, 113(1), 36-56. doi: 10.1017/S1446788722000015

    CrossRef Google Scholar

    [18] L. Grafakos, Classic Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, New York, 2008.

    Google Scholar

    [19] A. P. Griǹko, Solution of a non-linear differential equation with a generalized fractional derivative, Dokl. Akad. Nauk BSSR, 1991, 35(1), 27-31.

    Google Scholar

    [20] L. F. Gu and Y. Y. Liu, The approximate solution of Riemann type problems for Dirac equations by Newton embedding method, J. Appl. Anal. Comput. , 2020, 10, 326-334.

    Google Scholar

    [21] X. Guo and Z. W. Fu, An initial and boundary value problem of fractional Jeffreys' fluid in a porous half spaces, Computers Math. Appl., 2019, 78(6), 1801-1810. doi: 10.1016/j.camwa.2015.11.020

    CrossRef Google Scholar

    [22] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.

    Google Scholar

    [23] C. B. Morrey, On the solution of quasi-linear elliptic partial differential equation, Trans. Amer. Math. Soc., 1938, 51(2), 126-166.

    Google Scholar

    [24] J. M. Ruan, Q. Y. Wu and D. S. Fan, Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group, Math. Inequal. Appl., 2019, 22(1), 307-329.

    Google Scholar

    [25] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993.

    Google Scholar

    [26] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math., 1930, 2, 171-180. doi: 10.4064/sm-2-1-171-180

    CrossRef Google Scholar

    [27] S. G. Shi and J. Xiao, A tracing of the fractional temperature field, Sci. China Math., 2017, 60(11), 2303-2320. doi: 10.1007/s11425-016-0494-6

    CrossRef Google Scholar

    [28] S. G. Shi and J. Xiao, Fractional capacities relative to bounded open Lipschitz sets complemented, Calc. Var. Partial Differential Equations, 2017, 56, 3. doi: 10.1007/s00526-016-1105-5

    CrossRef Google Scholar

    [29] S. G. Shi and J. Xiao, On fractional capacities relative to bounded open lipschitz sets, Potential Anal., 2016, 45(2), 261-298. doi: 10.1007/s11118-016-9545-2

    CrossRef Google Scholar

    [30] S. G. Shi and L. Zhang, Dual characterization of fractional capacity via solution of fractional p-Laplace equation, Math. Nachr., 2020, 293(11), 2233-2247. doi: 10.1002/mana.201800438

    CrossRef Google Scholar

    [31] S. G. Shi, L. Zhang and G. L. Wang, Fractional non-linear regularity, potential and balayage, J. Geom. Anal., 2022, 32, 221. doi: 10.1007/s12220-022-00956-6

    CrossRef Google Scholar

    [32] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.

    Google Scholar

    [33] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.

    Google Scholar

    [34] Q. Y. Wu and D. S. Fan, Hardy space estimates of Hausdorff operators on the Heisenberg group, Nonlinear Anal., 2017, 164, 135-154. doi: 10.1016/j.na.2017.09.001

    CrossRef Google Scholar

    [35] Q. Y. Wu and Z. W. Fu, Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group, Banach J. Math. Anal., 2018, 12(4), 909-934. doi: 10.1215/17358787-2018-0006

    CrossRef Google Scholar

    [36] M. H. Yang, Z. W. Fu and J. Y. Sun, Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces, J. Differential Equations, 2019, 266, 5867-5894. doi: 10.1016/j.jde.2018.10.050

    CrossRef Google Scholar

    [37] Y. N. Yang, Q. Y. Wu and S. T. Jhang, 2D linear canonical transforms on LP and applications, Fractal Fract., 2023, 7(12), 100.

    Google Scholar

    [38] Y. N. Yang, Q. Y. Wu, S. T. Jhang and Q. Q. Kang, Approximation theorems associated with multidimensional fractional Fourier transform and applications in Laplace and heat equations, Fractal. Fract., 2022, 6(11), 625. doi: 10.3390/fractalfract6110625

    CrossRef Google Scholar

Article Metrics

Article views(1351) PDF downloads(1034) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint