Citation: | Jinxia Wu, Qingyan Wu, Yinuo Yang, Pei Dang, Guangzhen Ren. RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS AND DERIVATIVES ON MORREY SPACES AND APPLICATIONS TO A CAUCHY-TYPE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 1078-1096. doi: 10.11948/20230324 |
We investigate the boundedness and compactness of Riemann-Liouville integral operators on Morrey spaces, a class of nonseparable function spaces. Instead of adopting dual or maximal viewpoints in integrable function spaces, our approach is based on the compactness of the truncated Riemann-Liouville fractional integrals, leveraging a criterion for strongly pre-compact sets. By constructing a truncated Marchaud fractional derivative function, we characterize the solution to Abel's equation on Morrey spaces. Utilizing the fixed-point theorem, we establish the existence and uniqueness of solutions to a Cauchy-type problem for fractional differential equations. Additionally, we provide an illustrative example to demonstrate the sufficiency of the conditions presented in our main result.
[1] | D. R. Adams and J. Xiao, Morrey spaces in harmonic analysis, Ark. Mat., 2012, 50, 201-230. doi: 10.1007/s11512-010-0134-02019.12.015/0308106010871766210(1014) |
[2] | M. A. Al-Bassam, Some existence theorems on differential equations of generalized order, J. Reine Angew. Math., 1965, 218(1), 70-78. |
[3] | K. F. Andersen and E. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc., 1988, 308, 547-558. doi: 10.1090/S0002-9947-1988-0930071-4 |
[4] | S. Arshad, V. Lupulescu and D. O'Regan, Lp solutions for fractional integral equations, Fract. Calc. Appl. Anal, 2014, 17(1), 259-276. doi: 10.2478/s13540-014-0166-4 |
[5] | J. Bastero, M. Milman and F. J. Ruiz, Commutators for the maximal and sharp functions, Proc. Amer. Math. Soc., 2000, 128, 3329-3334. doi: 10.1090/S0002-9939-00-05763-4 |
[6] | D. -C. Chang, X. T. Duong, J. Li, W. Wang and Q. Y. Wu, An explicit formula of Cauchy-Szegő kernel for quaternionic Siegel upper half space and applications, Indiana Univ. Math. J., 2021, 70(6), 2451-2477. doi: 10.1512/iumj.2021.70.8732 |
[7] | P. Chen, X. T. Duong, J. Li and Q. Y. Wu, Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal., 2019, 277, 1639-1676. doi: 10.1016/j.jfa.2019.05.008 |
[8] | Y. P. Chen, Y. Ding and X. X. Wang, Compactness of commutators for singular integrals on Morrey spaces, Canad. J. Math., 2012, 64(2), 257-281. doi: 10.4153/CJM-2011-043-1 |
[9] | W. Chen, Z. W. Fu, L. Grafakos and Y. Wu, Fractional Fourier transforms on $L. p$ and applications, Appl. Comput. Harmon. Anal., 2021, 55, 71-96. doi: 10.1016/j.acha.2021.04.004 |
[10] | B. H. Dong, Z. W. Fu and J. S. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math., 2018, 61, 1807-1824. doi: 10.1007/s11425-017-9274-0 |
[11] |
X. T. Duong, M. Lacey, J. Li, B. D. Wick and Q. Y. Wu, Commutators of Cauchy-Szegő type integrals for domains in $\mathbb{C}^n$ with minimal smoothness, Indiana Univ. Math. J., 2021, 70(4), 1505-1541. doi: 10.1512/iumj.2021.70.8573
CrossRef $\mathbb{C}^n$ with minimal smoothness" target="_blank">Google Scholar |
[12] | Z. W. Fu, R. Gong, E. Pozzi and Q. Y. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 2023, 296(5), 1859-1885. doi: 10.1002/mana.202000139 |
[13] | Z. W. Fu, L. Grafakos, Y. Lin, Y. Wu and S. H. Yang. Riesz transform associated with the fractional Fourier transform and applications in image edge detection, Appl. Comput. Harmon. Anal., 2023, 66, 211-235. doi: 10.1016/j.acha.2023.05.003 |
[14] | Z. W. Fu, X. M. Hou, M. Y. Lee and J. Li, A study of one-sided Singular integral and function space via reproducing formula, J. Geom. Anal., 2023, 33, 289. doi: 10.1007/s12220-023-01340-8 |
[15] | Z. W. Fu, S. Z. Lu, Y. Pan and S. G. Shi, Some one-sided estimates for oscillatory singular integrals, Nonlinear Anal., 2014, 108(108), 144-160. |
[16] | Z. W. Fu, E. Pozzi and Q. Y. Wu, Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions, Front. Math. China, 2021, 16(5), 1269-1296. |
[17] | R. M. Gong, M. N. Vempati, Q. Y. Wu and P. Z. Xie, Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces, J. Aust. Math. Soc., 2022, 113(1), 36-56. doi: 10.1017/S1446788722000015 |
[18] | L. Grafakos, Classic Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, New York, 2008. |
[19] | A. P. Griǹko, Solution of a non-linear differential equation with a generalized fractional derivative, Dokl. Akad. Nauk BSSR, 1991, 35(1), 27-31. |
[20] | L. F. Gu and Y. Y. Liu, The approximate solution of Riemann type problems for Dirac equations by Newton embedding method, J. Appl. Anal. Comput. , 2020, 10, 326-334. |
[21] | X. Guo and Z. W. Fu, An initial and boundary value problem of fractional Jeffreys' fluid in a porous half spaces, Computers Math. Appl., 2019, 78(6), 1801-1810. doi: 10.1016/j.camwa.2015.11.020 |
[22] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006. |
[23] | C. B. Morrey, On the solution of quasi-linear elliptic partial differential equation, Trans. Amer. Math. Soc., 1938, 51(2), 126-166. |
[24] | J. M. Ruan, Q. Y. Wu and D. S. Fan, Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group, Math. Inequal. Appl., 2019, 22(1), 307-329. |
[25] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993. |
[26] | J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math., 1930, 2, 171-180. doi: 10.4064/sm-2-1-171-180 |
[27] | S. G. Shi and J. Xiao, A tracing of the fractional temperature field, Sci. China Math., 2017, 60(11), 2303-2320. doi: 10.1007/s11425-016-0494-6 |
[28] | S. G. Shi and J. Xiao, Fractional capacities relative to bounded open Lipschitz sets complemented, Calc. Var. Partial Differential Equations, 2017, 56, 3. doi: 10.1007/s00526-016-1105-5 |
[29] | S. G. Shi and J. Xiao, On fractional capacities relative to bounded open lipschitz sets, Potential Anal., 2016, 45(2), 261-298. doi: 10.1007/s11118-016-9545-2 |
[30] | S. G. Shi and L. Zhang, Dual characterization of fractional capacity via solution of fractional p-Laplace equation, Math. Nachr., 2020, 293(11), 2233-2247. doi: 10.1002/mana.201800438 |
[31] | S. G. Shi, L. Zhang and G. L. Wang, Fractional non-linear regularity, potential and balayage, J. Geom. Anal., 2022, 32, 221. doi: 10.1007/s12220-022-00956-6 |
[32] | E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993. |
[33] | E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. |
[34] | Q. Y. Wu and D. S. Fan, Hardy space estimates of Hausdorff operators on the Heisenberg group, Nonlinear Anal., 2017, 164, 135-154. doi: 10.1016/j.na.2017.09.001 |
[35] | Q. Y. Wu and Z. W. Fu, Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group, Banach J. Math. Anal., 2018, 12(4), 909-934. doi: 10.1215/17358787-2018-0006 |
[36] | M. H. Yang, Z. W. Fu and J. Y. Sun, Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces, J. Differential Equations, 2019, 266, 5867-5894. doi: 10.1016/j.jde.2018.10.050 |
[37] | Y. N. Yang, Q. Y. Wu and S. T. Jhang, 2D linear canonical transforms on LP and applications, Fractal Fract., 2023, 7(12), 100. |
[38] | Y. N. Yang, Q. Y. Wu, S. T. Jhang and Q. Q. Kang, Approximation theorems associated with multidimensional fractional Fourier transform and applications in Laplace and heat equations, Fractal. Fract., 2022, 6(11), 625. doi: 10.3390/fractalfract6110625 |