2024 Volume 14 Issue 3
Article Contents

Xianghong Hu, Xianwen Zhang. SHARP DECAY ESTIMATES FOR SMALL DATA SOLUTIONS TO THE MAGNETIZED VLASOV-POISSON SYSTEM AND MAGNETIZED VLASOV-YUKAWA SYSTEM[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1648-1673. doi: 10.11948/20230332
Citation: Xianghong Hu, Xianwen Zhang. SHARP DECAY ESTIMATES FOR SMALL DATA SOLUTIONS TO THE MAGNETIZED VLASOV-POISSON SYSTEM AND MAGNETIZED VLASOV-YUKAWA SYSTEM[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1648-1673. doi: 10.11948/20230332

SHARP DECAY ESTIMATES FOR SMALL DATA SOLUTIONS TO THE MAGNETIZED VLASOV-POISSON SYSTEM AND MAGNETIZED VLASOV-YUKAWA SYSTEM

  • Author Bio: Email: xianghonghu@hust.edu.cn(X. Hu)
  • Corresponding author: Email: xwzhang@hust.edu.cn(X. Zhang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Grant No. 11871024)
  • In this article, we present sharp decay estimates for small data solutions to the magnetized Vlasov-Poisson system and the magnetized Vlasov-Yukawa system in dimension three. Our arguments are based on the modification of the vector field method developed by Smulevici [42] for the Vlasov-Poisson system and improved by Duan [17] for the Vlasov-Poisson system and the Vlasov-Yukawa system. We extend the results in [17] to the magnetized case and slightly improve the decay estimates, our method improve the result in [48], in which a similar result was obtained but the norms considered have additional v-weighted Lp-norms. In our work, we do not need the extra Lp-norms.

    MSC: 35B40, 35Q49, 35Q83, 82D10
  • 加载中
  • [1] Bardos C., Degond P., Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1985, 2(2), 101–118. doi: 10.1016/s0294-1449(16)30405-x

    CrossRef Google Scholar

    [2] J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 1977, 25(3), 342–364. doi: 10.1016/0022-0396(77)90049-3

    CrossRef Google Scholar

    [3] L. Bigorgne, Sharp asymptotic behavior of solutions of the 3d Vlasov-Maxwell system with small data, Comm. Math. Phys., 2020, 376(2), 893–992. doi: 10.1007/s00220-019-03604-3

    CrossRef Google Scholar

    [4] L. Bigorgne, A vector field method for massless relativistic transport equations and applications, J. Funct. Anal., 2020, 278(4), 108365. doi: 10.1016/j.jfa.2019.108365

    CrossRef Google Scholar

    [5] L. Bigorgne, Asymptotic properties of the solutions to the Vlasov-Maxwell system in the exterior of a light cone, Int. Math. Res. Not. IMRN, 2021, 5, 3729–3793.

    Google Scholar

    [6] L. Bigorgne, Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data, Ann. Henri Poincaré, 2021, 22(1), 219–273. doi: 10.1007/s00023-020-00978-2

    CrossRef Google Scholar

    [7] L. Bigorgne, Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions, Mém. Soc. Math. Fr. (N.S.), 2022, 172, vi+123.

    Google Scholar

    [8] L. Bigorgne, Decay estimates for the massless Vlasov equation on Schwarzschild spacetimes, Ann. Henri Poincaré, 2023, 24(11), 3763–3836. doi: 10.1007/s00023-023-01327-9

    CrossRef Google Scholar

    [9] L. Bigorgne, D. Fajman, J. Joudioux, et al., Asymptotic stability of Minkowski space-time with non-compactly supported massless Vlasov matter, Arch. Ration. Mech. Anal., 2021, 242(1), 1–147. doi: 10.1007/s00205-021-01639-2

    CrossRef Google Scholar

    [10] M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 2009, 61(2), 91–123.

    Google Scholar

    [11] S. Caprino, G. Cavallaro and C. Marchioro, On a magnetically confined plasma with infinite charge, SIAM J. Math. Anal., 2014, 46(1), 133–164. doi: 10.1137/130916527

    CrossRef Google Scholar

    [12] S. Caprino, G. Cavallaro and C. Marchioro, On a Vlasov-Poisson plasma confined in a torus by a magnetic mirror, J. Math. Anal. Appl., 2015, 427(1), 31–46. doi: 10.1016/j.jmaa.2015.02.012

    CrossRef Google Scholar

    [13] S. Caprino, C. Marchioro and M. Pulvirenti, On the two-dimensional Vlasov-Helmholtz equation with infinite mass, Comm. Partial Differential Equations, 2002, 27(3–4), 791–808. doi: 10.1081/PDE-120002874

    CrossRef Google Scholar

    [14] S.-H. Choi, S.-Y. Ha and H. Lee, Dispersion estimates for the two-dimensional Vlasov-Yukawa system with small data, J. Differential Equations, 2011, 250(1), 515–550. doi: 10.1016/j.jde.2010.10.005

    CrossRef Google Scholar

    [15] N. Crouseilles, M. Lemou, F. Méhats and X. Zhao, Uniformly accurate particle-in-cell method for the long time solution of the two-dimensional Vlasov-Poisson equation with uniform strong magnetic field, J. Comput. Phys., 2017, 346, 172–190. doi: 10.1016/j.jcp.2017.06.011

    CrossRef Google Scholar

    [16] P. Degond and F. Filbet, On the asymptotic limit of the three dimensional Vlasov-Poisson system for large magnetic field: Formal derivation, J. Stat. Phys., 2016, 165(4), 765–784. doi: 10.1007/s10955-016-1645-2

    CrossRef Google Scholar

    [17] X.-L. Duan, Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data, Kinet. Relat. Models, 2022, 15(1), 119–146. doi: 10.3934/krm.2021049

    CrossRef Google Scholar

    [18] D. Fajman, J. Joudioux and J. Smulevici, Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions, 2017. DOI: 10.48550/arXiv.1704.05353.

    Google Scholar

    [19] D. Fajman, J. Joudioux and J. Smulevici, A vector field method for relativistic transport equations with applications, Anal. PDE, 2017, 10(7), 1539–1612. doi: 10.2140/apde.2017.10.1539

    CrossRef Google Scholar

    [20] D. Fajman, J. Joudioux and J. Smulevici, The stability of the Minkowski space for the Einstein-Vlasov system, Anal. PDE, 2021, 14(2), 425–531. doi: 10.2140/apde.2021.14.425

    CrossRef Google Scholar

    [21] E. Frénod, S. A. Hirstoaga, M. Lutz and E. Sonnendrücker, Long time behaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field, Commun. Comput. Phys., 2015, 18(2), 263–296. doi: 10.4208/cicp.070214.160115a

    CrossRef Google Scholar

    [22] E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, Asymptot. Anal., 1998, 18(3–4), 193–213.

    Google Scholar

    [23] E. Frénod and E. Sonnendrücker, Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field, Math. Models Methods Appl. Sci., 2000, 10(4), 539–553. doi: 10.1142/S021820250000029X

    CrossRef Google Scholar

    [24] R.-T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

    Google Scholar

    [25] F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. (9), 1999, 78(8), 791–817.

    Google Scholar

    [26] F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci., 2003, 13(5), 661–714. doi: 10.1142/S0218202503002647

    CrossRef Google Scholar

    [27] L. Grafakos, Classical Fourier Analysis, Springer, New York, 2014.

    Google Scholar

    [28] S.-Y. Ha and H. Lee, Global well posedness of the relativistic Vlasov-Yukawa system with small data, J. Math. Phys., 2007, 48(12), 123508. doi: 10.1063/1.2820988

    CrossRef Google Scholar

    [29] E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Ⅰ. General theory, Math. Methods Appl. Sci., 1981, 3(2), 229–248.

    Google Scholar

    [30] E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Ⅱ. Special cases, Math. Methods Appl. Sci., 1982, 4(1), 19–32. doi: 10.1002/mma.1670040104

    CrossRef Google Scholar

    [31] H. J. Hwang, A. Rendall and J. J. L. Velázquez, Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data, Arch. Ration. Mech. Anal., 2011, 200(1), 313–360. doi: 10.1007/s00205-011-0405-3

    CrossRef Google Scholar

    [32] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 1985, 38(3), 321–332. doi: 10.1002/cpa.3160380305

    CrossRef Google Scholar

    [33] P. Knopf, Optimal control of a Vlasov-Poisson plasma by an external magnetic field, Calc. Var. Partial Differential Equations, 2018, 57(5), 134. doi: 10.1007/s00526-018-1407-x

    CrossRef Google Scholar

    [34] H. Lindblad and M. Taylor, Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge, Arch. Ration. Mech. Anal., 2020, 235(1), 517–633. doi: 10.1007/s00205-019-01425-1

    CrossRef Google Scholar

    [35] P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 1991, 105(2), 415–430.

    Google Scholar

    [36] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, 1992, 95(2), 281–303. doi: 10.1016/0022-0396(92)90033-J

    CrossRef Google Scholar

    [37] J. Schaeffer, Global existence for the Poisson-Vlasov system with nearly symmetric data, J. Differential Equations, 1987, 69(1), 111–148. doi: 10.1016/0022-0396(87)90105-7

    CrossRef Google Scholar

    [38] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Partial Differential Equations, 1991, 16(8–9), 1313–1335. doi: 10.1080/03605309108820801

    CrossRef Google Scholar

    [39] A.-L. Skubachevskii, On the unique solvability of initial boundary value problems for the Vlasov-Poisson system of equations in a half-space, Dokl. Math., 2012, 85(2), 255–258. doi: 10.1134/S1064562412020263

    CrossRef Google Scholar

    [40] A.-L. Skubachevskii, Initial-boundary value problems for the Vlasov-Poisson equations in a half-space, Proc. Steklov Inst. Math., 2013, 283(1), 197–225. doi: 10.1134/S0081543813080142

    CrossRef Google Scholar

    [41] A.-L. Skubachevskii, Vlasov-Poisson equations for a two-component plasma in a homogeneous magnetic field, Uspekhi Mat. Nauk, 2014, 69(2), 107–148.

    Google Scholar

    [42] J. Smulevici, Small data solutions of the Vlasov-Poisson system and the vector field method, Ann. PDE, 2016, 2(2), 11. doi: 10.1007/s40818-016-0016-2

    CrossRef Google Scholar

    [43] S. Ukai and T. Okabe, On classical solutions in the large in time of two-dimensional Vlasov's equation, Osaka Math. J., 1978, 15(2), 245–261.

    Google Scholar

    [44] Y.-C. Wang, Decay estimates of solutions to the N-species Vlasov-Poisson system with small initial data, Math. Methods Appl. Sci., 2021, 44(17), 13099–13115. doi: 10.1002/mma.7611

    CrossRef Google Scholar

    [45] G.-N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar

    [46] S. Wollman, The spherically symmetric Vlasov-Poisson system, J. Differential Equations, 1980, 35(1), 30–35. doi: 10.1016/0022-0396(80)90046-7

    CrossRef Google Scholar

    [47] S. Wollman, Existence and uniqueness theory of the Vlasov-Poisson system with application to the problem with cylindrical symmetry, J. Math. Anal. Appl., 1982, 90(1), 138–170. doi: 10.1016/0022-247X(82)90050-6

    CrossRef Google Scholar

    [48] M. Wu, Sharp decay estimates for the Vlasov-Poisson system with an external magnetic field, Nonlinear Anal., 2022, 215, 112651. doi: 10.1016/j.na.2021.112651

    CrossRef Google Scholar

Article Metrics

Article views(1587) PDF downloads(247) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint