2024 Volume 14 Issue 3
Article Contents

Xixi Jiang, Feng Liu. CONTINUITY OF THE MULTILINEAR MAXIMAL COMMUTATORS IN SOBOLEV SPACES[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1674-1697. doi: 10.11948/20230334
Citation: Xixi Jiang, Feng Liu. CONTINUITY OF THE MULTILINEAR MAXIMAL COMMUTATORS IN SOBOLEV SPACES[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1674-1697. doi: 10.11948/20230334

CONTINUITY OF THE MULTILINEAR MAXIMAL COMMUTATORS IN SOBOLEV SPACES

  • Author Bio: Email: jxx15166021527@163.com(X. Jiang)
  • Corresponding author: Email: FLiu@sdust.edu.cn(F. Liu)
  • Fund Project: This work was supported partly by the National Natural Science Foundation of China (Grant No. 12326371) and the Natural Science Foundation of Shandong Province (Grant No. ZR2023MA022)
  • In the present paper we study the Sobolev continuity of the multilinear maximal commutators and their fractional variants with Lipschitz symbols. More precisely, let $\mathfrak{M}_{\alpha,\vec{b}}$ be the multilinear fractional maximal commutators, where $0\leq\alpha<mn$ and $\vec{b}=(b_{1},\ldots,b_{m})$ with each $b_i\in \rm Lip(\mathbb{R}^n)$. We establish the continuity of $\mathfrak{M}_{\alpha,\vec{b}}:W^{1,p_1} (\mathbb{R}^n)\times\cdots\times W^{1,p_m}(\mathbb{R}^n)\rightarrow W^{1,q}(\mathbb{R}^n)$, provided that $1<p_1,\ldots,p_m<\infty$, $1/q=\sum_{i=1}^m1/p_i-\alpha/n$ and $1\leq q<\infty$. The main result we obtain answers a question originally posed by Chen and Liu in 2022. Our main result is new, even in the linear case m=1.

    MSC: 42B25, 46E35
  • 加载中
  • [1] M. Agcayazi, A. Gogatishvili, K. Koca and R. Mustafayev, A note on maximal commutators and commutators of maximal functions, J. Math. Soc. Jpn., 2015, 67(2), 581–593.

    Google Scholar

    [2] J. M. Aldaz and J. Pérez Lázaro, Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities, Trans. Amer. Math. Soc., 2007, 359(5), 2443–2461.

    Google Scholar

    [3] A. M. Alphonse, An end point estimate for maximal commutators, J. Fourier Anal. Appl., 2000, 6, 449–456. doi: 10.1007/BF02510149

    CrossRef Google Scholar

    [4] D. Beltran and J. Madrid, Regularity of the centered fractional maximal function on radial functions, J. Funct. Anal., 2020, 279, 108686. doi: 10.1016/j.jfa.2020.108686

    CrossRef Google Scholar

    [5] R. Bu, Z. W. Fu and Y. D. Zhang, Weighted estimates for bilinear square function with non-smooth kernels and commutators, Front. Math. China, 2020, 15, 1–20. doi: 10.1007/s11464-020-0822-4

    CrossRef Google Scholar

    [6] E. Carneiro and D. Moreira, On the regularity of maximal operators, Proc. Amer. Math. Soc., 2008, 136(12), 4395–4404. doi: 10.1090/S0002-9939-08-09515-4

    CrossRef Google Scholar

    [7] P. Chen, X. T. Duong, J. Li and Q. Y. Wu, Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal., 2019, 277, 1639–1676. doi: 10.1016/j.jfa.2019.05.008

    CrossRef Google Scholar

    [8] T. Chen and F. Liu, Regularity of commutators of multilinear maximal operators with Lipschitz symbols, Math. Inequal. Appl., 2022, 25(1), 109–134.

    Google Scholar

    [9] F. Deringoz, V. S. Guliyev and S. G. Hasanov, Commutators of fractional maximal operator on generalized Orlicz–Morrey spaces, Positivity, 2018, 22, 141–158. doi: 10.1007/s11117-017-0504-y

    CrossRef Google Scholar

    [10] F. Deringoz, V. S. Guliyev and S. Samko, Vanishing generalized Orlicz–Morrey spaces and fractional maximal operator, Publ. Math. Debrecen, 2017, 90(1–2), 125–147. doi: 10.5486/PMD.2017.7494

    CrossRef Google Scholar

    [11] X. T. Duong, M. Lacey, J. Li, B. D. Wick and Q. Y. Wu, Commutators of Cauchy-Szego type integrals for domains in Cn with minimal smoothness, Indiana Univ. Math. J., 2021, 70, 1505–1541. doi: 10.1512/iumj.2021.70.8573

    CrossRef Google Scholar

    [12] H. Federer and W. Ziemer, The Lebesgue set of a function whose distribution derivatives are p-th power summable, Indiana Univ. Math. J., 1972, 22, 139–158. doi: 10.1512/iumj.1973.22.22013

    CrossRef Google Scholar

    [13] Z. W. Fu, R. M. Gong, E. Pozzi and Q. Y. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 2023, 296(5), 1859–1885. doi: 10.1002/mana.202000139

    CrossRef Google Scholar

    [14] Z. W. Fu, S. L. Gong, S. Z. Lu and W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 2015, 27, 2825–2852. doi: 10.1515/forum-2013-0064

    CrossRef Google Scholar

    [15] Z. W. Fu, L. Grafakos, Y. Lin, Y. Wu and S. H. Yang, Riesz transform associated with the fractional Fourier transform and applications in image edge detection, Appl. Comput. Harmon. Anal., 2023, 66, 211–235. doi: 10.1016/j.acha.2023.05.003

    CrossRef Google Scholar

    [16] Z. W. Fu, X. M. Hou, M. Y. Lee and J. Li, A study of one-sided singular integral and function space via reproducing formula, J. Geom. Anal., 2023, 33. DOI: 10.1007/s12220-023-01340-8.

    CrossRef Google Scholar

    [17] J. García-Cuerva, E. Harboure, C. Segovia and J. L. Torrea, Weighted norm inequalities for commutators of strongly singular integrals, Indiana Univ. Math. J., 1991, 40, 1397–1420. doi: 10.1512/iumj.1991.40.40063

    CrossRef Google Scholar

    [18] R. M. Gong, M. N. Vempati, Q. Y. Wu and P. Z. Xie, Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces, J. Aust. Math. Soc., 2022, 113(1), 36–56. doi: 10.1017/S1446788722000015

    CrossRef Google Scholar

    [19] C. González-Riquelme, Continuity for the one-dimensional centered Hardy–Littlewood maximal opeator at the derivative level, J. Funct. Anal., 2023, 285(9), 110097. doi: 10.1016/j.jfa.2023.110097

    CrossRef Google Scholar

    [20] V. S. Guliyev and F. Deringoz, Some characterizations of Lipschitz spaces via commutators on generalized Orlicz–Morrey spaces, Mediterr. J. Math., 2018, 15(180), 1–19.

    Google Scholar

    [21] P. Hajłasz and J. Onninen, On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 2004, 29(1), 167–176.

    Google Scholar

    [22] J. Kinnunen, The Hardy–Littlewood maximal function of a Sobolev function, Israel J. Math., 1997, 100, 117–124. doi: 10.1007/BF02773636

    CrossRef Google Scholar

    [23] J. Kinnunen and P. Lindqvist, The derivative of the maximal function, J. Reine. Angew. Math., 1998, 503, 161–167.

    Google Scholar

    [24] J. Kinnunen and E. Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc., 2003, 35(4), 529–535. doi: 10.1112/S0024609303002017

    CrossRef Google Scholar

    [25] A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory, Adv. Math., 2009, 220, 1222–1264. doi: 10.1016/j.aim.2008.10.014

    CrossRef Google Scholar

    [26] F. Liu, Continuity and approximate differentiability of multisublinear fractional maximal functions, Math. Inequal. Appl., 2018, 21(1), 25–40.

    Google Scholar

    [27] F. Liu and G. Wang, Regularity of commutators of maximal operators with Lipschitz symbols, Taiwan. J. Math., 2021, 25(5), 1007–1039.

    Google Scholar

    [28] F. Liu and H. Wu, On the regularity of the multisublinear maximal functions, Canad. Math. Bull., 2015, 58(4), 808–817. doi: 10.4153/CMB-2014-070-7

    CrossRef Google Scholar

    [29] F. Liu and S. Xi, Sobolev regularity for commutators of the fractional maximal functions, Banach. J. Math. Anal., 2021, 15(5), 1–36.

    Google Scholar

    [30] F. Liu, Q. Xue and K. Yabuta, Sobolev boundedness and continuity for commutators of the local Hardy–Littlewood maximal function, Annales Fennici Mathematici, 2022, 47, 203–235.

    Google Scholar

    [31] F. Liu, Q. Xue and P. Zhang, Regularity and continuity of commutators of the Hardy–Littlewood maximal function, Math. Nachr., 2020, 293(3), 491–509. doi: 10.1002/mana.201900013

    CrossRef Google Scholar

    [32] H. Luiro, Continuity of the maixmal operator in Sobolev spaces, Proc. Amer. Math. Soc., 2007, 135(1), 243–251.

    Google Scholar

    [33] H. Luiro, On the regularity of the Hardy–Littlewood maximal operator on subdomains of $\mathbb{R}^n$, Proc. Edinburgh Math. Soc., 2010, 53(1), 211–237.

    Google Scholar

    [34] C. Pérez and R. H. Torres, Sharp maximal function estimates for multilinear singular integrals, Contemp. Math., 2003, 320, 323–331.

    Google Scholar

    [35] J. M. Ruan, Q. Y. Wu and D. S. Fan, Weighted Moes for Hausdorff operator and its commutator on the Heisenberg group, Math. Inequal. Appl., 2019, 22(1), 307–329.

    Google Scholar

    [36] C. Segovia and J. L. Torrea, Weighted inequalities for commutators of fractional and singular integrals, Publ. Mat., 1991, 35, 209–235. doi: 10.5565/PUBLMAT_35191_09

    CrossRef Google Scholar

    [37] C. Segovia and J. L. Torrea, Higher order commutators for vector-valued Calderón–Zygmund operators, Trans. Amer. Math. Soc., 1993, 336, 537–556.

    Google Scholar

    [38] S. G. Shi, Z. W. Fu and S. Z. Lu, On the compactness of commutators of Hardy operators, Pacific J. Math., 2020, 307, 239–256. doi: 10.2140/pjm.2020.307.239

    CrossRef Google Scholar

    [39] S. G. Shi and S. Z. Lu, A characterization of Campanato space via commutator of fractional integral, J. Math. Anal. Appl., 2014, 419, 123–137. doi: 10.1016/j.jmaa.2014.04.040

    CrossRef Google Scholar

    [40] Q. Y. Wu and Z. W. Fu, Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces, Bull. Malays. Math. Sci. Soc., 2017, 40, 635–654. doi: 10.1007/s40840-017-0444-5

    CrossRef Google Scholar

    [41] M. H. Yang, Z. W. Fu and J. Y. Sun, Existence and large time behavior to coupled chemotaxis-fluid equations in Besov–Morrey spaces, J. Differ. Equations, 2019, 266, 5867–5894. doi: 10.1016/j.jde.2018.10.050

    CrossRef Google Scholar

    [42] M. H. Yang, Z. W. Fu and J. Y. Sun, Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces, Sci. China Math., 2017, 60, 1837–1856. doi: 10.1007/s11425-016-0490-y

    CrossRef Google Scholar

    [43] P. Zhang, Characterization of Lipschitz spaces via commutators of the Hardy–Littlewood maximal function, C. R. Acad. Sci. Paris Ser. I, 2017, 355(3), 336–344. doi: 10.1016/j.crma.2017.01.022

    CrossRef Google Scholar

    [44] P. Zhang, Characterization of boundedness of some commutators of maximal functions in terms of Lipschitz spaces, Anal. Math. Phys., 2019, 9(3), 1411–1427. doi: 10.1007/s13324-018-0245-5

    CrossRef Google Scholar

    [45] P. Zhang, Multiple weighted estimates for commutators of multilinear maximal function, Acta Math. Sin. Engl. Ser., 2015, 31(6), 973–994. doi: 10.1007/s10114-015-4293-6

    CrossRef Google Scholar

Article Metrics

Article views(1299) PDF downloads(329) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint