Citation: | Mohamed Jleli, Bessem Samet. ON HERMITE-HADAMARD-TYPE CHARACTERIZATIONS OF HIGHER-ORDER DIFFERENTIAL INEQUALITIES[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2158-2170. doi: 10.11948/20230347 |
Let $ I $ be an open interval of $ \mathbb{R} $ and $ f: I\to \mathbb{R} $. It is well-known that $ f $ is convex in $ I $ if and only if, for all $ x, y\in I $ with $ x<y $, it holds that
$ \frac{1}{y-x}\int_x^y f(z)\, dz\leq \frac{f(x)+f(y)}{2}. $
The above inequality is known in the literature as Hermite-Hadamard inequality. In the first part of this paper, we extend the above result to the set of functions $ f\in C^{2n}(I) $ satisfying the higher-order differential inequality $ (-1)^nf^{(2n)}\leq 0\mbox{ in }I $. In particular, when $ f $ satisfies the above inequality with $ n=2 $, and $ f $ is convex, we obtain an interesting refinement of Hermite-Hadamard inequality. The second part of this paper is devoted to the study of sub-biharmonic functions, i.e., the set of functions $ f\in C^4(\Omega) $, $ \Omega $ is an open subset of $ \mathbb{R}^N $ ($ N\geq 2 $), satisfying $ \Delta^2f\leq 0\mbox{ in }\Omega $. Namely, a characterization of this set of functions is established. In particular, when $ f $ is subharmonic ($ \Delta f\geq 0 $ in $ \Omega $) and $ f $ is sub-biharmonic, an interesting refinement of Hermite-Hadamard inequality in higher dimension is obtained.
[1] | S. Abramovich and L. E. Persson, Fejér and Hermite-Hadamard type inequalities for N-quasiconvex functions, Math. Notes., 2017, 102(5), 599–609. |
[2] | B. Ahmad, A. Alsaedi, M. Kirane and B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 2019, 353, 120–129. doi: 10.1016/j.cam.2018.12.030 |
[3] | J. Barić, L. Kvesić, J. Pecarić and M. R. Penava, Estimates on some quadrature rules via weighted Hermite-Hadamard inequality, Appl. Anal. Discret. Math., 2022, 16(1), 232–245. doi: 10.2298/AADM201127013B |
[4] | T. Beck, B. Brandolini, K. Burdzy, A. Henrot, J. J. Langford, S. Larson, R. G. Smits and S. Steinerberger, Improved bounds for Hermite-Hadamard inequalities in higher dimensions, J. Geom. Anal., 2021, 31, 801–816. doi: 10.1007/s12220-019-00300-5 |
[5] | E. F. Beckenbach and T. Radó, Subharmonic functions and surfaces of negative curvature, Trans. Am. Math. Soc., 1933, 35(3), 662–674. doi: 10.1090/S0002-9947-1933-1501708-X |
[6] | J. de la Cal and J. Carcamo, Multidimensional Hermite-Hadamard inequalities and the convex order, J. Math. Anal. Appl., 2006, 324(1), 248–261. doi: 10.1016/j.jmaa.2005.12.018 |
[7] | L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhäuser Mass, USA, Boston, 1997. |
[8] | S. S. Dragomir, On Hadamard's inequality on a disk, J. Inequal. Pure Appl. Math., 2000, 1(1), Article 2. http://jipam.vu.edu.au. |
[9] | S. S. Dragomir, On Hadamard's inequality for the convex mappings defined on a ball in the space and applications, Math. Ineq. & Appl., 2000, 3(2), 177–187. |
[10] | S. S. Dragomir and C. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. |
[11] | S. S. Dragomir and B. T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic p-convex functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 2019, 113(4), 3413–3423. doi: 10.1007/s13398-019-00708-2 |
[12] | A. Guessab and B. Semisalov, Optimal general Hermite-Hadamard-type inequalities in a ball and their applications in multidimensional numerical integration, Applied Numerical Mathematics., 2021, 170, 83–108. doi: 10.1016/j.apnum.2021.07.016 |
[13] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 1893, 58, 171–215. |
[14] | H. Hedenmalm, S. Jakobsson and S. Shimorin, A maximum principle à la Hadamard for biharmonic operators with applications to the Bergman spaces, C. R. Acad. Sci. Paris Sér. I Math., 1999, 328(11), 973–978. doi: 10.1016/S0764-4442(99)80308-5 |
[15] | C. Hermite, Sur deux limites d'une intégrale défine, Mathesis., 1883, 3(1), 1–82. |
[16] | S. Larson, A sharp multidimensional Hermite-Hadamard inequality, Int. Math. Res. Not. IMRN., 2022, 2022(2), 1297–1312. doi: 10.1093/imrn/rnaa138 |
[17] | J. Lu and S. Steinerberger, A dimension-free Hermite-Hadamard inequality via gradient estimates for the torsion function, Proc. Amer. Math., 2020, 148(2), 673–679. |
[18] | P. R. Mercer, Hadamard's inequality and trapezoid rules for the Riemann-Stieltjes integral, J. Math. Anal. Appl., 2008, 344(2), 921–926. doi: 10.1016/j.jmaa.2008.03.026 |
[19] | M. Mihailescu and C. Niculescu, An extension of the Hermite-Hadamard inequality through subharmonic functions, Glasg. Math. J., 2007, 49(3), 509–514. doi: 10.1017/S0017089507003837 |
[20] | P. O. Mohammed and M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 2020, 2020(372), Article Number 112740. |
[21] | C. P. Niculescu and L.-E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exch., 2003, 29(2), 663–685. |
[22] | C. P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, Springer Science+Business Media, Inc., 2006. |
[23] | T. Radó, Subharmonic Functions, in: Ergebnisse der Mathematik und Ihrer Grenzgebiete, Springer, Berlin, 1937. |
[24] | M. Reade, Some remarks on subharmonic functions, Duke Math. J., 1943, 10(3), 531–536. |
[25] | A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York-San Francisco-London, 1973. |
[26] | S. Steinerberger, The Hermite-Hadamard inequality in higher dimension, J. Geom. Anal., 2020, 30(1), 466–483. |