Citation: | Xuping Zhang, Pan Sun, Donal O'Regan. MONOTONE ITERATIVE TECHNIQUE FOR IMPULSIVE EVOLUTION EQUATIONS WITH INFINITE DELAY[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1717-1734. doi: 10.11948/20230357 |
In this paper, we use a monotone iterative technique in the presence of lower and upper solutions to discuss the existence of solutions for the initial value problem of impulsive evolution equations with infinite delay in an ordered Banach space X. Finally, we give an example to illustrate our main results.
[1] | R. P. Agarwal, S. Hristova and D. O'Regan, Integral representations of scalar delay non-instantaneous impulsive Riemann-Liouville fractional differential equations, Appl. Anal., 2022, 101(18), 6495–6513. doi: 10.1080/00036811.2021.1931686 |
[2] | R. P. Agarwal, G. U. Rahman and Muhsina, Mathematical analysis of impulsive fractional differential inclusion of pantograph type, Math. Methods Appl. Sci., 2023, 46(2), 2801–2839. doi: 10.1002/mma.8675 |
[3] | R. Bellman, The stability of solutions of linear differential equations, Duke. Math. J., 1943, 10, 643–647. |
[4] | J. Cao, Y. Luo and G. Liu, Some results for impulsive fractional differential inclusions with infinite delay and sectorial operators in Banach spaces, Appl. Math. Comput., 2016, 273, 237–257. |
[5] | Y. K. Chang, Controllability of implusive functional differential systems with infinite delay in Banach spaces, Chao Solitons Fractals., 2007, 33(5), 1601–1609. doi: 10.1016/j.chaos.2006.03.006 |
[6] | J. C. Chang, Existence and compactness of solutions to impulsive differential equations with nonlocal conditions, Math. Methods Appl. Sci., 2016, 39(2), 317–327. doi: 10.1002/mma.3479 |
[7] | R. Chaudhary and N. P. Dwijendra, Monotone iterative technique for neutral fractional differential equation with infinite delay, Math. Method. Appl. Sci., 2016, 39(15), 4642–4653. doi: 10.1002/mma.3901 |
[8] | P. Chen and Y. Li, Monotone interative method for abstract impulsive integro-differential equations with nonlcoal conditions in Banach spaces, Appl. Math., 2014, 59(1), 99–120. doi: 10.1007/s10492-014-0044-8 |
[9] | P. Chen and Y. Li, Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach spaces, Nonlinear Anal., 2011, 74(11), 3578–3588. doi: 10.1016/j.na.2011.02.041 |
[10] | K. Deimling, Nonlinear Functional Analysis, New York: Springer-Verlag, 1985. |
[11] | H. M. Eduardo, M. Rabello and H. R. Henriquez, Existence of solutions for impulsive partial neutral differential equations, J. Math. Anal. Appl., 2007, 331(2), 1135–1158. doi: 10.1016/j.jmaa.2006.09.043 |
[12] | M. Fečkan and J. Pačuta, Periodic and bounded solutions of functional differential equations with small delays, Electron. J. Qual. Theory Differ. Equ., 2022, 2022(33), 1–10. |
[13] | X. Fu, Existence and stability of solutions to neutral equations with infinite delay, Electron. J. Differ. Eq., 2013, 2013(55), 1–19. |
[14] | X. Fu and Y. Cao, Existence for neutral impulsive differential inclusions with nonlocal conditions, Nonlinear Anal., 2008, 68(12), 3707–3718. doi: 10.1016/j.na.2007.04.013 |
[15] | X. Fu and L. Zhou, Stability for impulsive functional differential equations with infinite delays, Acta. Math. Sin., 2010, 26(5), 909–922. doi: 10.1007/s10114-009-7071-5 |
[16] | D. Guo and V. Lakshmikantham, Nonlinear Problem in Abstract Cones, New York: Academic Press, 1988. |
[17] | D. Guo and X. Liu, Extremal solutions of nonlinear impulsive integro-differential equations in Banach spaces, J. Anal. Math. Anal., 1993, 177(2), 538–553. doi: 10.1006/jmaa.1993.1276 |
[18] | J. K. Hale and J. Kato, Phase space for retared equations with infinite delay Funckcial, Ekvac., 1978, 21(1), 11–41. |
[19] | H. R. Heinz, On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 1983, 7(12), 1351–1371. doi: 10.1016/0362-546X(83)90006-8 |
[20] | H. Huang and X. Fu, Optimal control problems for a neutral integro-differential system with infinite delay, Evol. Equ. Control Theory, 2022, 11(1), 177–197. doi: 10.3934/eect.2020107 |
[21] | H. Huang and X. Fu, Asymptotic properties of solutions for impulsive neutral stochastic functional integro-differential equations, J. Math. Phys., 2021, 62(1), 18 pp. |
[22] | M. Li and J. Wang, Finite time stability of fractional delay differential equations, Appl. Math. Lett., 2017, 64, 170–176. doi: 10.1016/j.aml.2016.09.004 |
[23] | Y. Li and H. Gou, Mixed monotone iterative technique for semlinear impulsive fractional evolution equations, J. Appl. Anal. Comput., 2019, 9(4), 1217–1242. |
[24] | Y. Li and Z. Liu, Monotone iterative technique for addressing impulsive integro-differential equations in Banach spaces, Nonlinear Anal., 2007, 66(1), 83–92. doi: 10.1016/j.na.2005.11.013 |
[25] | J. Liang and T. J. Xiao, Solvability of the cauchy problem for infinite delay equations, Nonlinear Anal., 2004, 58, 271–297. doi: 10.1016/j.na.2004.05.005 |
[26] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Berli: Springer-Verlag, 1983. |
[27] | D. Raghavan and S. Nagarajan, Extremal mild solutions of fractional evolution equation with mixed monotone impulsive conditions, Bull. Malays. Appl. Sci. Soc., 2022, 45(4), 1427–1452. doi: 10.1007/s40840-022-01288-y |
[28] | L. Suo, M. Fečkan and J. Wang, Controllability and observability for linear quaternion-valued impulsive differential equations, Commun. Nonlinear Sci. Numer. Simul., 2023, 2023(124), 40 pp. |
[29] | I. I. Vrabie, C0-Semigroups and Applications, North-Holland Mathematics Studies 191, Amsterdam: Elsevier, 2003. |
[30] | S. Xie, Existence results of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay, Fract. Calc. Appl. Anal., 2014, 17(4), 1158–1174. doi: 10.2478/s13540-014-0219-8 |
[31] | B. Yan, Bounded value problems on the half-line with impulses and infinite delay, J. Math. Anal. Appl., 2001, 259(1), 94–114. doi: 10.1006/jmaa.2000.7392 |
[32] | H. Yang, Monotone iterative technique for the initial value problems of impulsive evolution equations in ordered Banach spaces, Abstr. Appl. Anal., 2010, 2010, 1–11. |
[33] | X. Zhang, Lower and upper solutions for delay evolution equations with nonlocal and impulsive conditions, Electron. J. Differ. Eq., 2022, 2022(31), 1–14. |
[34] | X. Zhang, P. Chen and Y. Li, Monotone iterative method for retareded evolution equations involving nonlocal and impulsive conditions, Electron. J. Differ. Eq., 2020, 2020(68), 1–25. |
[35] | J. Zhu and X. Fu, Periodicity of solutions for non-autonomous neutral functional differential equations with state-dependent delay, J. Dynam. Differential Equations, 2023, 35(2), 1389–1408. doi: 10.1007/s10884-021-10098-y |
[36] | J. Zhu and X. Fu, Existence and asymptotic periodicity of solutions for neutral integro-differential evolution equations with infinite delay, Math. Slovaca., 2022, 72(1), 121–140. doi: 10.1515/ms-2022-0009 |