2024 Volume 14 Issue 3
Article Contents

Xuping Zhang, Pan Sun, Donal O'Regan. MONOTONE ITERATIVE TECHNIQUE FOR IMPULSIVE EVOLUTION EQUATIONS WITH INFINITE DELAY[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1717-1734. doi: 10.11948/20230357
Citation: Xuping Zhang, Pan Sun, Donal O'Regan. MONOTONE ITERATIVE TECHNIQUE FOR IMPULSIVE EVOLUTION EQUATIONS WITH INFINITE DELAY[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1717-1734. doi: 10.11948/20230357

MONOTONE ITERATIVE TECHNIQUE FOR IMPULSIVE EVOLUTION EQUATIONS WITH INFINITE DELAY

  • Author Bio: Email: psun0831@163.com(P. Sun); Email: donal.oregan@nuigalway.ie(D. O'Regan)
  • Corresponding author: Email: lanyu9986@126.com(X. Zhang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12301303), Young Doctor Fund Project of Gansu Provincial Department of Education (No. 2023QB-111), Funds for Innovative Fundamental Research Group Project of Gansu Province (No. 23JRRA684) and Project of NWNU-LKZD2023-03
  • In this paper, we use a monotone iterative technique in the presence of lower and upper solutions to discuss the existence of solutions for the initial value problem of impulsive evolution equations with infinite delay in an ordered Banach space X. Finally, we give an example to illustrate our main results.

    MSC: 34G20, 34K30, 47H08
  • 加载中
  • [1] R. P. Agarwal, S. Hristova and D. O'Regan, Integral representations of scalar delay non-instantaneous impulsive Riemann-Liouville fractional differential equations, Appl. Anal., 2022, 101(18), 6495–6513. doi: 10.1080/00036811.2021.1931686

    CrossRef Google Scholar

    [2] R. P. Agarwal, G. U. Rahman and Muhsina, Mathematical analysis of impulsive fractional differential inclusion of pantograph type, Math. Methods Appl. Sci., 2023, 46(2), 2801–2839. doi: 10.1002/mma.8675

    CrossRef Google Scholar

    [3] R. Bellman, The stability of solutions of linear differential equations, Duke. Math. J., 1943, 10, 643–647.

    Google Scholar

    [4] J. Cao, Y. Luo and G. Liu, Some results for impulsive fractional differential inclusions with infinite delay and sectorial operators in Banach spaces, Appl. Math. Comput., 2016, 273, 237–257.

    Google Scholar

    [5] Y. K. Chang, Controllability of implusive functional differential systems with infinite delay in Banach spaces, Chao Solitons Fractals., 2007, 33(5), 1601–1609. doi: 10.1016/j.chaos.2006.03.006

    CrossRef Google Scholar

    [6] J. C. Chang, Existence and compactness of solutions to impulsive differential equations with nonlocal conditions, Math. Methods Appl. Sci., 2016, 39(2), 317–327. doi: 10.1002/mma.3479

    CrossRef Google Scholar

    [7] R. Chaudhary and N. P. Dwijendra, Monotone iterative technique for neutral fractional differential equation with infinite delay, Math. Method. Appl. Sci., 2016, 39(15), 4642–4653. doi: 10.1002/mma.3901

    CrossRef Google Scholar

    [8] P. Chen and Y. Li, Monotone interative method for abstract impulsive integro-differential equations with nonlcoal conditions in Banach spaces, Appl. Math., 2014, 59(1), 99–120. doi: 10.1007/s10492-014-0044-8

    CrossRef Google Scholar

    [9] P. Chen and Y. Li, Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach spaces, Nonlinear Anal., 2011, 74(11), 3578–3588. doi: 10.1016/j.na.2011.02.041

    CrossRef Google Scholar

    [10] K. Deimling, Nonlinear Functional Analysis, New York: Springer-Verlag, 1985.

    Google Scholar

    [11] H. M. Eduardo, M. Rabello and H. R. Henriquez, Existence of solutions for impulsive partial neutral differential equations, J. Math. Anal. Appl., 2007, 331(2), 1135–1158. doi: 10.1016/j.jmaa.2006.09.043

    CrossRef Google Scholar

    [12] M. Fečkan and J. Pačuta, Periodic and bounded solutions of functional differential equations with small delays, Electron. J. Qual. Theory Differ. Equ., 2022, 2022(33), 1–10.

    Google Scholar

    [13] X. Fu, Existence and stability of solutions to neutral equations with infinite delay, Electron. J. Differ. Eq., 2013, 2013(55), 1–19.

    Google Scholar

    [14] X. Fu and Y. Cao, Existence for neutral impulsive differential inclusions with nonlocal conditions, Nonlinear Anal., 2008, 68(12), 3707–3718. doi: 10.1016/j.na.2007.04.013

    CrossRef Google Scholar

    [15] X. Fu and L. Zhou, Stability for impulsive functional differential equations with infinite delays, Acta. Math. Sin., 2010, 26(5), 909–922. doi: 10.1007/s10114-009-7071-5

    CrossRef Google Scholar

    [16] D. Guo and V. Lakshmikantham, Nonlinear Problem in Abstract Cones, New York: Academic Press, 1988.

    Google Scholar

    [17] D. Guo and X. Liu, Extremal solutions of nonlinear impulsive integro-differential equations in Banach spaces, J. Anal. Math. Anal., 1993, 177(2), 538–553. doi: 10.1006/jmaa.1993.1276

    CrossRef Google Scholar

    [18] J. K. Hale and J. Kato, Phase space for retared equations with infinite delay Funckcial, Ekvac., 1978, 21(1), 11–41.

    Google Scholar

    [19] H. R. Heinz, On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 1983, 7(12), 1351–1371. doi: 10.1016/0362-546X(83)90006-8

    CrossRef Google Scholar

    [20] H. Huang and X. Fu, Optimal control problems for a neutral integro-differential system with infinite delay, Evol. Equ. Control Theory, 2022, 11(1), 177–197. doi: 10.3934/eect.2020107

    CrossRef Google Scholar

    [21] H. Huang and X. Fu, Asymptotic properties of solutions for impulsive neutral stochastic functional integro-differential equations, J. Math. Phys., 2021, 62(1), 18 pp.

    Google Scholar

    [22] M. Li and J. Wang, Finite time stability of fractional delay differential equations, Appl. Math. Lett., 2017, 64, 170–176. doi: 10.1016/j.aml.2016.09.004

    CrossRef Google Scholar

    [23] Y. Li and H. Gou, Mixed monotone iterative technique for semlinear impulsive fractional evolution equations, J. Appl. Anal. Comput., 2019, 9(4), 1217–1242.

    Google Scholar

    [24] Y. Li and Z. Liu, Monotone iterative technique for addressing impulsive integro-differential equations in Banach spaces, Nonlinear Anal., 2007, 66(1), 83–92. doi: 10.1016/j.na.2005.11.013

    CrossRef Google Scholar

    [25] J. Liang and T. J. Xiao, Solvability of the cauchy problem for infinite delay equations, Nonlinear Anal., 2004, 58, 271–297. doi: 10.1016/j.na.2004.05.005

    CrossRef Google Scholar

    [26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Berli: Springer-Verlag, 1983.

    Google Scholar

    [27] D. Raghavan and S. Nagarajan, Extremal mild solutions of fractional evolution equation with mixed monotone impulsive conditions, Bull. Malays. Appl. Sci. Soc., 2022, 45(4), 1427–1452. doi: 10.1007/s40840-022-01288-y

    CrossRef Google Scholar

    [28] L. Suo, M. Fečkan and J. Wang, Controllability and observability for linear quaternion-valued impulsive differential equations, Commun. Nonlinear Sci. Numer. Simul., 2023, 2023(124), 40 pp.

    Google Scholar

    [29] I. I. Vrabie, C0-Semigroups and Applications, North-Holland Mathematics Studies 191, Amsterdam: Elsevier, 2003.

    Google Scholar

    [30] S. Xie, Existence results of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay, Fract. Calc. Appl. Anal., 2014, 17(4), 1158–1174. doi: 10.2478/s13540-014-0219-8

    CrossRef Google Scholar

    [31] B. Yan, Bounded value problems on the half-line with impulses and infinite delay, J. Math. Anal. Appl., 2001, 259(1), 94–114. doi: 10.1006/jmaa.2000.7392

    CrossRef Google Scholar

    [32] H. Yang, Monotone iterative technique for the initial value problems of impulsive evolution equations in ordered Banach spaces, Abstr. Appl. Anal., 2010, 2010, 1–11.

    Google Scholar

    [33] X. Zhang, Lower and upper solutions for delay evolution equations with nonlocal and impulsive conditions, Electron. J. Differ. Eq., 2022, 2022(31), 1–14.

    Google Scholar

    [34] X. Zhang, P. Chen and Y. Li, Monotone iterative method for retareded evolution equations involving nonlocal and impulsive conditions, Electron. J. Differ. Eq., 2020, 2020(68), 1–25.

    Google Scholar

    [35] J. Zhu and X. Fu, Periodicity of solutions for non-autonomous neutral functional differential equations with state-dependent delay, J. Dynam. Differential Equations, 2023, 35(2), 1389–1408. doi: 10.1007/s10884-021-10098-y

    CrossRef Google Scholar

    [36] J. Zhu and X. Fu, Existence and asymptotic periodicity of solutions for neutral integro-differential evolution equations with infinite delay, Math. Slovaca., 2022, 72(1), 121–140. doi: 10.1515/ms-2022-0009

    CrossRef Google Scholar

Article Metrics

Article views(1135) PDF downloads(374) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint