2024 Volume 14 Issue 3
Article Contents

Rachid Benzaid, Abbes Benaissa. INDIRECT BOUNDARY STABILIZATION FOR WEAKLY COUPLED DEGENERATE WAVE EQUATIONS UNDER FRACTIONAL DAMPING[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1735-1770. doi: 10.11948/20230374
Citation: Rachid Benzaid, Abbes Benaissa. INDIRECT BOUNDARY STABILIZATION FOR WEAKLY COUPLED DEGENERATE WAVE EQUATIONS UNDER FRACTIONAL DAMPING[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1735-1770. doi: 10.11948/20230374

INDIRECT BOUNDARY STABILIZATION FOR WEAKLY COUPLED DEGENERATE WAVE EQUATIONS UNDER FRACTIONAL DAMPING

  • In this paper, we consider the well-posedness and stability of a one-dimensional system of degenerate wave equations coupled via zero order terms with one boundary fractional damping acting on one end only. We prove optimal polynomial energy decay rate of order 1/t(3−τ). The method is based on the frequency domain approach combined with multiplier technique.

    MSC: 35B40, 35L80, 74D05, 93D15
  • 加载中
  • [1] Z. Achouri, N. Amroun and A. Benaissa, The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type. Math. , Method. Appl. Sci., 2017, 40(11), 3837–3854. doi: 10.1002/mma.4267

    CrossRef Google Scholar

    [2] M. Akil, M. Ghader and A. Wehbe, The influence of the coefficients of a system of wave equations coupled by velocities on its stabilization, SeMA J., 2021, 78(3), 287–333. doi: 10.1007/s40324-020-00233-y

    CrossRef Google Scholar

    [3] F. Alabau-Boussouira, P. Cannarsa and G. Leugering, Control and stabilization of degenerate wave equations, SIAM J. Controle Optim, 2017, 555(3), 1–36.

    Google Scholar

    [4] K. Ammari, F. Hassine and L. Robbiano, Stabilization for Some Fractional-Evolution Systems, SpringerBriefs Math. Springer, Cham, 2022.

    Google Scholar

    [5] K. Ammari, F. Hassine and L. Robbiano, Fractional-feedback stabilization for a class of evolution systems, J. Differential Equations, 2020, 268(10), 5751–5791. doi: 10.1016/j.jde.2019.11.022

    CrossRef Google Scholar

    [6] K. Ammari, F. Hassine and L. Robbiano, Stabilization of fractional evolution systems with memory, J. Evol. Equ., 2021, 21(1), 831–844. doi: 10.1007/s00028-020-00603-z

    CrossRef Google Scholar

    [7] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Am. Math. Soc., 1988, 306, 837–852. doi: 10.1090/S0002-9947-1988-0933321-3

    CrossRef Google Scholar

    [8] A. Benaissa, C. Aichi, Energy decay for a degenerate wave equation under fractional derivative controls, Filomat, 2018, 32(17), 6045–6072. doi: 10.2298/FIL1817045B

    CrossRef Google Scholar

    [9] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 2010, 347(2), 455–478. doi: 10.1007/s00208-009-0439-0

    CrossRef Google Scholar

    [10] P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 2008, 47(1), 1–19. (electronic), 2006.

    Google Scholar

    [11] J. U. Choi and R. C. Maccamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 1989, 139, 448–464. doi: 10.1016/0022-247X(89)90120-0

    CrossRef Google Scholar

    [12] M. Fotouhi and L. Salimi, Null controllability of degenerate/singular parabolic equations, J. Dyn. Control Syst., 2012, 18(4), 573–602. doi: 10.1007/s10883-012-9160-5

    CrossRef Google Scholar

    [13] F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differ. Equ., 1985, 1, 43–55.

    Google Scholar

    [14] M. Kerdache, M. Kesri, A. Benaissa, Fractional boundary stabilization for a coupled system of wave equations, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 2021, 67(1), 121–148. doi: 10.1007/s11565-021-00362-w

    CrossRef Google Scholar

    [15] M. Koumaiha, Analyse Numérique pour les Équations de Hamilton-Jacobi sur Réseaux et Controlabilité Stabilité Indirecte d'un Système D'équations des Ondes 1D, PhD thesis, Université Paris est, 2017.

    Google Scholar

    [16] V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, Wiley-Masson Series Research in Applied Mathematics, Wiley, 1995.

    Google Scholar

    [17] N. N. Lebedev, Special Functions and their Applications, Dover Publications, New York, 1972.

    Google Scholar

    [18] Z. Liu and B. Rao, Frequency domain approach for the polynomial stability of a system of partially damped wave equations, J. Math. Anal. Appl., 2007, 335(2), 860–881. doi: 10.1016/j.jmaa.2007.02.021

    CrossRef Google Scholar

    [19] B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Contr. Inf., 2006, 23, 237–257. doi: 10.1093/imamci/dni056

    CrossRef Google Scholar

    [20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983.

    Google Scholar

    [21] J. Pruss, On the spectrum of C0-semigroups, Transactions of the American Mathematical Society, 1984, 284(2), 847–857.

    Google Scholar

    [22] H. Zerkouk, C. Aichi and A. Benaissa, On the stability of a degenerate wave equation under fractional feedbacks acting on the degenerate boundary, J. Dyn. Control Syst., 2022, 28(3), 601–633. doi: 10.1007/s10883-021-09578-7

    CrossRef Google Scholar

Article Metrics

Article views(1291) PDF downloads(364) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint