2024 Volume 14 Issue 4
Article Contents

Lu-Lu Yan, Fan Yang, Xiao-Xiao Li. THE FRACTIONAL TIKHONOV REGULARIZATION METHOD FOR SIMULTANEOUS INVERSION OF THE SOURCE TERM AND INITIAL VALUE IN A SPACE-FRACTIONAL ALLEN-CAHN EQUATION[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2257-2282. doi: 10.11948/20230364
Citation: Lu-Lu Yan, Fan Yang, Xiao-Xiao Li. THE FRACTIONAL TIKHONOV REGULARIZATION METHOD FOR SIMULTANEOUS INVERSION OF THE SOURCE TERM AND INITIAL VALUE IN A SPACE-FRACTIONAL ALLEN-CAHN EQUATION[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2257-2282. doi: 10.11948/20230364

THE FRACTIONAL TIKHONOV REGULARIZATION METHOD FOR SIMULTANEOUS INVERSION OF THE SOURCE TERM AND INITIAL VALUE IN A SPACE-FRACTIONAL ALLEN-CAHN EQUATION

  • Author Bio: Email: luluyanlut@163.com(L. Yan); Email: lixiaoxiaogood@126.com(X. Li)
  • Corresponding author: Email: yfggd114@163.com(F. Yang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11961044) and the Doctor Fund of Lan Zhou University of Technology
  • In this paper, we consider the inverse problem for identifying the source term and initial value simultaneously in a space-fractional Allen-Cahn equation. This problem is ill-posed, i.e., the solution of this problem does not depend continuously on the data. The fractional Tikhonov method is used to solve this problem. Under the a priori and the a posteriori regularization parameter choice rules, the error estimates between the regularization solutions and the exact solutions are obtained, respectively. Different numerical examples are presented to illustrate the validity and effectiveness of our method.

    MSC: 35R25, 47A52, 35R30
  • 加载中
  • [1] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 1979, 27(6), 1085–1095. doi: 10.1016/0001-6160(79)90196-2

    CrossRef Google Scholar

    [2] Q. Du, C. Liu and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comput. Phys., 2004, 198(2), 450–468. doi: 10.1016/j.jcp.2004.01.029

    CrossRef Google Scholar

    [3] L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 1992, 45(9), 1097–1123. doi: 10.1002/cpa.3160450903

    CrossRef Google Scholar

    [4] L. C. Evans and J. Spruck, Motion of level sets by mean curvature, J. Differ. Geom., 1991, 33(3), 635–681.

    Google Scholar

    [5] X. F. Yang, Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Discrete and Continuous Dynamical Systems - B, 2009, 11(4), 1057–1070. doi: 10.3934/dcdsb.2009.11.1057

    CrossRef Google Scholar

    [6] T. Tang and J. Yang, Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle, J. Comput. Math., 2016, 34(5), 471–781.

    Google Scholar

    [7] J. W. Choi, H. G. Lee, et al., An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A, 2009, 388(9), 1791–1803. doi: 10.1016/j.physa.2009.01.026

    CrossRef Google Scholar

    [8] T. Hou, D. Xiu and W. Jiang, A new second-order maximum-principle preserving finite difference scheme for Allen-Cahn equations with periodic boundary conditions, Appl. Math. Lett., 2020, 104(0), 106265.

    Google Scholar

    [9] H. Zhang, J. Yan, X. Qian, et al., On the preserving of the maximum principle and energy stability of high-order implicit-explicit Runge-Kutta schemes for the space-fractional Allen-Cahn equation, Numer. Algorithms, 2021, 88(3), 1309–1336. doi: 10.1007/s11075-021-01077-x

    CrossRef Google Scholar

    [10] T. Hou, T. Tang and J. Yang, Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations, J. Sci. Comput., 2017, 72(3), 1214–1231. doi: 10.1007/s10915-017-0396-9

    CrossRef Google Scholar

    [11] D. He, K. Pan and H. Hu, A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation, Appl. Numer. Math., 2020. DOI: 10.1016/j.apnum.2019.12.018.

    CrossRef Google Scholar

    [12] H. Chen and H. Sun, A dimensional splitting exponential time differencing scheme for multidimensional fractional Allen-Cahn equations, J. Sci. Comput., 2021, 87(1), 1–25. doi: 10.1007/s10915-020-01404-9

    CrossRef Google Scholar

    [13] H. Chen and H. Sun, Second-order maximum principle preserving Strang's splitting schemes for anisotropic fractional Allen-Cahn equations, Numer. Algorithms, 2022, 90(2), 749–771. doi: 10.1007/s11075-021-01207-5

    CrossRef Google Scholar

    [14] F. Yang, Y. P. Ren and X. X. Li, Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation, Bound. Value Probl., 2017, 2017(1), 163. doi: 10.1186/s13661-017-0898-2

    CrossRef Google Scholar

    [15] F. Yang, X. Liu and X. X. Li, Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation, Adv. Differ. Equ., 2017, 2017(1), 388. doi: 10.1186/s13662-017-1423-8

    CrossRef Google Scholar

    [16] H. Jafari, A. Babaei and S. Banihashemi, A novel approach for solving an inverse reaction-diffusion-convection problem, J. Optimiz. Theory App., 2019, 183(2), 688–704. doi: 10.1007/s10957-019-01576-x

    CrossRef Google Scholar

    [17] F. Yang and C. L. Fu, The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation, Appl. Math. Model., 2015, 39(5–6), 1500–1512.

    Google Scholar

    [18] F. Yang, C. L. Fu and X. X. Li, The inverse source problem for time fractional diffusion equation: Stability analysis and regularization, Inverse Probl. Sci. Eng., 2015, 23(6), 969–996. doi: 10.1080/17415977.2014.968148

    CrossRef Google Scholar

    [19] F. Yang, C. L. Fu and X. X. Li, A mollification regularization method for unknown source in time-fractional diffusion equation, Int. J. Comput. Math., 2014, 91(7), 1516–1534. doi: 10.1080/00207160.2013.851787

    CrossRef Google Scholar

    [20] Z. Qian and X. L. Feng, A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation, Appl. Anal., 2017, 96(10), 1656–1668. doi: 10.1080/00036811.2016.1254776

    CrossRef Google Scholar

    [21] Q. Yang, F. Liu and I. Turner, Numerical methods for fractional partial differential equations with riesz space fractional derivatives, Appl. Math. Model., 2010, 34(1), 200–218.

    Google Scholar

    [22] E. Klann and R. Ramlau, Regularization by fractional filter methods and data smoothing, Inverse Prol., 2008, 24(2), 025018.

    Google Scholar

    [23] X. M. Xue and X. T. Xiong, A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation, Appl. Math. Comput., 2019. DOI: 10.1016/j.amc.2018.12.063.

    CrossRef Google Scholar

    [24] Z. J. Zhang, W. H. Deng and H. T. Fan, Finite difference schemes for the tempered fractional Laplacian, Numer. Math. Theor. Meth. Appl., 2019, 12(2), 492–516.

    Google Scholar

    [25] M. E. Hochstenbach and L. Reichel, Fractional Tikhonov regularization for linear discrete ill-posed problems, BIT., 2011, 51(1), 197–215.

    Google Scholar

Figures(6)  /  Tables(3)

Article Metrics

Article views(1397) PDF downloads(204) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint