Citation: | Lijuan Yang, Ruyun Ma. INFINITELY MANY SOLUTIONS FOR A P-SUPERLINEAR P-LAPLACIAN PROBLEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1778-1789. doi: 10.11948/20230394 |
We are concerned with the existence of infinitely many solutions for $ p $-Laplacian problem
$ \left\{\begin{array}{l}-\left(\varphi_p\left(u^{\prime}\right)\right)^{\prime}=g(u)+h\left(x, u, u^{\prime}\right), \quad x \in(0,1), \\u(0)=u(1)=0,\end{array}\right.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(P) $
where $ \varphi_p(s):=|s|^{p-2}\cdot s $, $ p>1 $, $ g:\mathbb{R}\to\mathbb{R} $ is a continuous function and satisfies $ p $-superlinear growth at infinity, $ h:[0, 1]\times\mathbb{R}^2\to\mathbb{R} $ is a continuous function satisfying $ |h(x, \xi, \xi_1)|\leqslant C+\frac{1}{2}|\varphi_p(\xi)| $. Based on global bifurcation techniques, we obtain infinitely many solutions of $ (P) $ having specified nodal properties.
[1] | R. Agarwal, D. Cao and H. Lu, Existence and multiplicity of positive solutions for singular semipositone p-Laplacian equations, Can. J. Math., 2006, 58(3), 449–475. doi: 10.4153/CJM-2006-019-2 |
[2] | T. Alotaibi, D. D. Hai and R. Shivaji, Existence and nonexistence of positive radial solutions for a class of p-laplacian superlinear problems with nonlinear boundary conditions, Commun. Pure Appl. Anal., 2020, 19(9), 4655–4666. doi: 10.3934/cpaa.2020131 |
[3] | A. Ambrosetti, J. G. Azorero and I. Peral, Quasilinear equations with a multiple bifurcation, Differential Integral Equations, 1997, 10(1), 37–50. |
[4] | G. Bognar, Numerical and Numerical and Analytic Investigation of some Nonlinear Problems in Fluid Mechanics, Computer and Simulation in Modern Science Ⅱ, WSEAS Press, 2008. |
[5] | K. D. Chu, D. D. Hai and R. Shivaji, A uniqueness result for infinite semipositone p-Laplacian problems in a ball, Complex Var. Elliptic Equ., 2022, 67(6), 1496–1503. doi: 10.1080/17476933.2021.1882437 |
[6] | G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian, J. Differential Equations, 2012, 252(3), 2448–2468. doi: 10.1016/j.jde.2011.09.026 |
[7] | G. Dai, R. Ma and J. Xu, Global bifurcation and nodal solutions of N-dimensional p-Laplacian in unit ball, Appl. Anal., 2013, 92(7), 1345–1356. doi: 10.1080/00036811.2012.678333 |
[8] | M. A. Del Pino and R. F. Manásevich, Global bifurcation from the eigenvalues of the p-Laplacian, J. Differential Equations, 1991, 92(2), 226–251. doi: 10.1016/0022-0396(91)90048-E |
[9] | R. Kajikiya, Y.-H. Lee and I. Sim, Bifurcation of sign-changing solutions for one-dimensional p-Laplacian with a strong singular weight; p-sublinear at $\infty$, Nonlinear Anal., 2009, 71(3–4), 1235–1249. |
[10] | K. Lan, X. Yang and G. Yang, Positive solutions of one-dimensional p-Laplacian equations and applications to population models of one species, Topol. Methods Nonlinear Anal., 2015, 46(1), 431–445. doi: 10.12775/TMNA.2015.053 |
[11] | Y.-H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional p-Laplacian, J. Differential Equations, 2006, 229(1), 229–256. doi: 10.1016/j.jde.2006.03.021 |
[12] | R. Ma, Connected component of positive solutions for singular superlinear semi-positone problems, Topol. Methods Nonlinear Anal., 2020, 55(1), 51–62. |
[13] | Q. Morres, R. Shivajia and I. Sim, Existence of positive radial solutions for a superlinear semipositone p-Laplacian problem on the exterior of a ball, Proc. Roy. Soc. Edinburgh, 2018, 148A(2), 409–428. |
[14] | Y. Naito and S. Tanaka, Sharp conditions for the existence of sign-changing solutions to equations involving the one-dimensional p-Laplacian, Nonlinear Anal., 2008, 69(9), 3070–3083. doi: 10.1016/j.na.2007.09.002 |
[15] | L. V. Nasirova, Global bifurcation from intervals in nonlinear Sturm-Liouville problem with indefinite weight function, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 2021, 47(2), 346–356. |
[16] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7, 487–513. doi: 10.1016/0022-1236(71)90030-9 |
[17] | B. P. Rynne, Infinitely many solutions of superlinear fourth order boundary value problems. Topol. Methods Nonlinear Anal., 2002, 19(2), 303–312. doi: 10.12775/TMNA.2002.016 |
[18] | I. Sim and S. Tanaka, Three positive solutions for one-dimensional p-Laplacian problem with sign-changing weight, Appl. Math. Lett., 2015, 49(42–50), 42–50. |
[19] | B. Son and P. Wang, Analysis of positive radial solutions for singular superlinear p-Laplacian systems on the exterior of a ball, Nonlinear Anal., 2020, 192, 1–15. |
[20] | J. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc., 1997, 125(8), 2275–2283. doi: 10.1090/S0002-9939-97-04148-8 |