2024 Volume 14 Issue 3
Article Contents

Lijuan Yang, Ruyun Ma. INFINITELY MANY SOLUTIONS FOR A P-SUPERLINEAR P-LAPLACIAN PROBLEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1778-1789. doi: 10.11948/20230394
Citation: Lijuan Yang, Ruyun Ma. INFINITELY MANY SOLUTIONS FOR A P-SUPERLINEAR P-LAPLACIAN PROBLEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1778-1789. doi: 10.11948/20230394

INFINITELY MANY SOLUTIONS FOR A P-SUPERLINEAR P-LAPLACIAN PROBLEMS

  • Author Bio: Email: yanglj97@163.com(L. Yang)
  • Corresponding author: Email: mary@nwnu.edu.cn(R. Ma)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12061064) and Shaanxi Fundamental Science Research Project for Mathematics and Physics (22JSY018)
  • We are concerned with the existence of infinitely many solutions for $ p $-Laplacian problem

    $ \left\{\begin{array}{l}-\left(\varphi_p\left(u^{\prime}\right)\right)^{\prime}=g(u)+h\left(x, u, u^{\prime}\right), \quad x \in(0,1), \\u(0)=u(1)=0,\end{array}\right.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(P) $

    where $ \varphi_p(s):=|s|^{p-2}\cdot s $, $ p>1 $, $ g:\mathbb{R}\to\mathbb{R} $ is a continuous function and satisfies $ p $-superlinear growth at infinity, $ h:[0, 1]\times\mathbb{R}^2\to\mathbb{R} $ is a continuous function satisfying $ |h(x, \xi, \xi_1)|\leqslant C+\frac{1}{2}|\varphi_p(\xi)| $. Based on global bifurcation techniques, we obtain infinitely many solutions of $ (P) $ having specified nodal properties.

    MSC: 34B05, 35B32
  • 加载中
  • [1] R. Agarwal, D. Cao and H. Lu, Existence and multiplicity of positive solutions for singular semipositone p-Laplacian equations, Can. J. Math., 2006, 58(3), 449–475. doi: 10.4153/CJM-2006-019-2

    CrossRef Google Scholar

    [2] T. Alotaibi, D. D. Hai and R. Shivaji, Existence and nonexistence of positive radial solutions for a class of p-laplacian superlinear problems with nonlinear boundary conditions, Commun. Pure Appl. Anal., 2020, 19(9), 4655–4666. doi: 10.3934/cpaa.2020131

    CrossRef Google Scholar

    [3] A. Ambrosetti, J. G. Azorero and I. Peral, Quasilinear equations with a multiple bifurcation, Differential Integral Equations, 1997, 10(1), 37–50.

    Google Scholar

    [4] G. Bognar, Numerical and Numerical and Analytic Investigation of some Nonlinear Problems in Fluid Mechanics, Computer and Simulation in Modern Science Ⅱ, WSEAS Press, 2008.

    Google Scholar

    [5] K. D. Chu, D. D. Hai and R. Shivaji, A uniqueness result for infinite semipositone p-Laplacian problems in a ball, Complex Var. Elliptic Equ., 2022, 67(6), 1496–1503. doi: 10.1080/17476933.2021.1882437

    CrossRef Google Scholar

    [6] G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian, J. Differential Equations, 2012, 252(3), 2448–2468. doi: 10.1016/j.jde.2011.09.026

    CrossRef Google Scholar

    [7] G. Dai, R. Ma and J. Xu, Global bifurcation and nodal solutions of N-dimensional p-Laplacian in unit ball, Appl. Anal., 2013, 92(7), 1345–1356. doi: 10.1080/00036811.2012.678333

    CrossRef Google Scholar

    [8] M. A. Del Pino and R. F. Manásevich, Global bifurcation from the eigenvalues of the p-Laplacian, J. Differential Equations, 1991, 92(2), 226–251. doi: 10.1016/0022-0396(91)90048-E

    CrossRef Google Scholar

    [9] R. Kajikiya, Y.-H. Lee and I. Sim, Bifurcation of sign-changing solutions for one-dimensional p-Laplacian with a strong singular weight; p-sublinear at $\infty$, Nonlinear Anal., 2009, 71(3–4), 1235–1249.

    $\infty$" target="_blank">Google Scholar

    [10] K. Lan, X. Yang and G. Yang, Positive solutions of one-dimensional p-Laplacian equations and applications to population models of one species, Topol. Methods Nonlinear Anal., 2015, 46(1), 431–445. doi: 10.12775/TMNA.2015.053

    CrossRef Google Scholar

    [11] Y.-H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional p-Laplacian, J. Differential Equations, 2006, 229(1), 229–256. doi: 10.1016/j.jde.2006.03.021

    CrossRef Google Scholar

    [12] R. Ma, Connected component of positive solutions for singular superlinear semi-positone problems, Topol. Methods Nonlinear Anal., 2020, 55(1), 51–62.

    Google Scholar

    [13] Q. Morres, R. Shivajia and I. Sim, Existence of positive radial solutions for a superlinear semipositone p-Laplacian problem on the exterior of a ball, Proc. Roy. Soc. Edinburgh, 2018, 148A(2), 409–428.

    Google Scholar

    [14] Y. Naito and S. Tanaka, Sharp conditions for the existence of sign-changing solutions to equations involving the one-dimensional p-Laplacian, Nonlinear Anal., 2008, 69(9), 3070–3083. doi: 10.1016/j.na.2007.09.002

    CrossRef Google Scholar

    [15] L. V. Nasirova, Global bifurcation from intervals in nonlinear Sturm-Liouville problem with indefinite weight function, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 2021, 47(2), 346–356.

    Google Scholar

    [16] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7, 487–513. doi: 10.1016/0022-1236(71)90030-9

    CrossRef Google Scholar

    [17] B. P. Rynne, Infinitely many solutions of superlinear fourth order boundary value problems. Topol. Methods Nonlinear Anal., 2002, 19(2), 303–312. doi: 10.12775/TMNA.2002.016

    CrossRef Google Scholar

    [18] I. Sim and S. Tanaka, Three positive solutions for one-dimensional p-Laplacian problem with sign-changing weight, Appl. Math. Lett., 2015, 49(42–50), 42–50.

    Google Scholar

    [19] B. Son and P. Wang, Analysis of positive radial solutions for singular superlinear p-Laplacian systems on the exterior of a ball, Nonlinear Anal., 2020, 192, 1–15.

    Google Scholar

    [20] J. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc., 1997, 125(8), 2275–2283. doi: 10.1090/S0002-9939-97-04148-8

    CrossRef Google Scholar

Article Metrics

Article views(930) PDF downloads(207) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint