Citation: | Jianqing Suo, Zhijie Shi, Zhen Wei. DEPENDENCE OF EIGENVALUES ON THE REGULAR FOURTH-ORDER STURM-LIOUVILLE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2788-2807. doi: 10.11948/20230425 |
In this paper, the eigenvalues of a regular fourth-order Sturm-Liouville (SL) problems are studied. The eigenvalues depend not only continuously but smoothly on the problem. An expression for the derivative of the eigenvalues with respect to a given parameter: an endpoint, a boundary condition, a coefficient, or the weight function, are found.
[1] | P. Bailey, W. Everitt and A. Zettl, The SLEIGN2 Sturm-Liouville code, ACM Transactions on Mathematical Software, 2001, 21, 143–192. |
[2] | L. Battle, Solution dependence on problem parameters for initial value problems associated with the stieltjes Sturm-Liouville equations, Electron. J. Differ. Equa., 2005, 2, 1–18. |
[3] | B. Chanane, Eigenvalues of fourth order Sturm-Liouville problems using Fliess series, J. Comput. Appl. Math., 1998, 96, 91–97. doi: 10.1016/S0377-0427(98)00086-7 |
[4] | B. Chanane, Fliess series approach to the computation of the eigenvalues of fourth-order Sturm-Liouville problems, Appl. Math. Lett., 2002, 15, 459–702. doi: 10.1016/S0893-9659(01)00159-8 |
[5] | M. Dauge and B. Helffer, Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators, J. Differ. Equa., 1993, 104, 243-262. doi: 10.1006/jdeq.1993.1071 |
[6] | J. DieudonnšŠ, Foundations of Modern Analysis, Academic Press, New York, London, 1969. |
[7] | S. Fu, Z. Qiao and Z. Wang, Eigenvalues and eigenfunctions of a schr$\ddot{o}$dinger operator associated with a finite combination of Dirac-Delta functions and CH peakons, Journal of Nonlinear Modeling and Analysis, 2021, 3(1), 131–144. |
[8] | S. Ge, W. Wang and J. Suo, Dependence of eigenvalues of a class of fourth-order Sturm-Liouville problems on the boundary, Applied Mathematics and Computation, 2013, 220, 268–276. doi: 10.1016/j.amc.2013.06.029 |
[9] | L. Greenberg and M. Marletta, The code SLEUTH for solving fourth-order Sturm-Liouville problems, ACM Trans. Math. Softw., 1997, 23, 453–493. doi: 10.1145/279232.279231 |
[10] | L. Greenberg, An oscillation method for fourth order self-adjoint two-point boundary value problems with nonlinear eigenvalues, SIAM J. Math. Anal., 1991, 22, 1021–1042. doi: 10.1137/0522067 |
[11] | L. Greenberg and M. Marletta, Oscillation theory and numerical solution of fourth order Sturm-Liouville problems, IMA J. Numer. Anal., 1995, 15, 319–356. doi: 10.1093/imanum/15.3.319 |
[12] | L. Greenberg and M. Marletta, Numerical methods for higher order Sturm-Liouville problems, J. Comput. Appl. Math., 2000, 125, 367–383. doi: 10.1016/S0377-0427(00)00480-5 |
[13] | Q. Kong, H. Wu and A. Zettl, Dependence of eigenvalues on the problems, Math. Nachr., 1997, 188, 173–201. doi: 10.1002/mana.19971880111 |
[14] | Q. Kong and A. Zettl, Dependence of eigenvalues of Sturm-Liouville problems on the boundary, J. Differ. Equat., 1996, 126, 389–407. doi: 10.1006/jdeq.1996.0056 |
[15] | Q. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differ. Equa., 1996, 131, 1–19. doi: 10.1006/jdeq.1996.0154 |
[16] | Q. Kong and A. Zettl, Linear ordinary differential equations, in inequalities and applications, R. P. Agarwal, (Ed.), WSSIAA, 1994, 3, 381–397. |
[17] | K. Li, J. Sun and X. Hao, Eigenvalues of regular fourth-order Sturm-Liouville problems with transmission conditions, Math. Methods Appl. Sci., 2017, 40, 3538–3551. doi: 10.1002/mma.4243 |
[18] | X. Lv and J. Ao, Eigenvalues of fourth-order boundary value problems with self-adjoint canonical boundary conditions, Bull. Malays. Math. Sci. Soc., 2020, 43, 833–846. doi: 10.1007/s40840-018-00714-4 |
[19] | X. Lv, J. Ao and A. Zettl, Dependence of eigenvalues of fourth-order differential equations with discontinuous boundary conditions on the problem, J. Math. Anal. Appl., 2017, 456, 671–685. doi: 10.1016/j.jmaa.2017.07.021 |
[20] | Y. Liu and Q. Li, Existence and uniqueness of solutions and lyapunov-type inequality for a mixed fractional boundary value problem, Journal of Nonlinear Modeling and Analysis, 2022, 4(2), 207–219. |
[21] | M. Lord, M. Scott and H. Watts, Computation of eigenvalue/eigenfunctions for two-point boundary-value problems, Applied Non-Linear Analysis, V. Lakshmikantham (Ed.), Academic Press, 1979, 635–656. |
[22] | J. P$\ddot{o}$schel and E. Trubowitz, Inverse Spectral Theory, Academic Press, New York, London, Sydney, 1987. |
[23] | J. Suo and W. Wang, Eigenvalues of a class of regular fourth-order Sturm-Liouville problems, Applied Mathematics and Computation, 2012, 218, 9716–9729. doi: 10.1016/j.amc.2012.03.015 |
[24] | A. Wang, J. Sun and A. Zettl, The classification of self-adjoint boundary conditions: Separated coupled and mixed, J. Funct. Anal., 2008, 255, 1554–1573. doi: 10.1016/j.jfa.2008.05.003 |
[25] | R. Wang and Z. Wu, Lecture of Ordinary Differential Equations, Beijing People's Education Press, 1963, 198–207, (in chinese). |
[26] | A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 121, 2005. |
[27] | H. Zhang and J. Ao, Eigenvalue properties of third-order boundary value problems with distributional potentials, Acta Mathematicae Applicatae Sinica, English Series, 2022, 38(4), 861–881. doi: 10.1007/s10255-022-1020-9 |
[28] | H. Zhang, J. Ao and F. Bo, Eigenvalues of fourth-order boundary value problems with distributional potentials, AIMS Mathematics, 2022, 7(5), 7294–7317. doi: 10.3934/math.2022407 |
[29] | H. Zhang, J. Ao and M. Li, Dependence of Eigenvalues of Sturm-Liouville problems with eigenparameter-dependent boundary conditions and interface conditions, Mediterr. J. Math., 2022, 19, 1–17. doi: 10.1007/s00009-021-01753-1 |
[30] | H. Zhang, J. Ao and D. Mu, Eigenvalues of discontinuous third-order boundary value problems with eigenparameter-dependent boundary conditions, J. Math. Anal. Appl., 2022, 506, 125680. doi: 10.1016/j.jmaa.2021.125680 |
[31] | M. Zhang and K. Li, Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions, Appl. Math. Comput., 2020, 378, 125214. |