2024 Volume 14 Issue 5
Article Contents

Jianqing Suo, Zhijie Shi, Zhen Wei. DEPENDENCE OF EIGENVALUES ON THE REGULAR FOURTH-ORDER STURM-LIOUVILLE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2788-2807. doi: 10.11948/20230425
Citation: Jianqing Suo, Zhijie Shi, Zhen Wei. DEPENDENCE OF EIGENVALUES ON THE REGULAR FOURTH-ORDER STURM-LIOUVILLE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2788-2807. doi: 10.11948/20230425

DEPENDENCE OF EIGENVALUES ON THE REGULAR FOURTH-ORDER STURM-LIOUVILLE PROBLEM

  • Author Bio: Email: SZJshizhijie@163.com(Z. Shi); Email: 15044974134@163.com(Z. Wei)
  • Corresponding author: Email: sjq.hello@163.com(J. Suo) 
  • Fund Project: The authors were supported by the National Nature Science Foundation of China (12361027), Inner Mongolia Autonomous Region Natural Science Foundation (2017MS0119) and Specialized Research Fund for the Doctoral Program of Higher Education (20131501120006)
  • In this paper, the eigenvalues of a regular fourth-order Sturm-Liouville (SL) problems are studied. The eigenvalues depend not only continuously but smoothly on the problem. An expression for the derivative of the eigenvalues with respect to a given parameter: an endpoint, a boundary condition, a coefficient, or the weight function, are found.

    MSC: 34B20, 34B24, 34B05
  • 加载中
  • [1] P. Bailey, W. Everitt and A. Zettl, The SLEIGN2 Sturm-Liouville code, ACM Transactions on Mathematical Software, 2001, 21, 143–192.

    Google Scholar

    [2] L. Battle, Solution dependence on problem parameters for initial value problems associated with the stieltjes Sturm-Liouville equations, Electron. J. Differ. Equa., 2005, 2, 1–18.

    Google Scholar

    [3] B. Chanane, Eigenvalues of fourth order Sturm-Liouville problems using Fliess series, J. Comput. Appl. Math., 1998, 96, 91–97. doi: 10.1016/S0377-0427(98)00086-7

    CrossRef Google Scholar

    [4] B. Chanane, Fliess series approach to the computation of the eigenvalues of fourth-order Sturm-Liouville problems, Appl. Math. Lett., 2002, 15, 459–702. doi: 10.1016/S0893-9659(01)00159-8

    CrossRef Google Scholar

    [5] M. Dauge and B. Helffer, Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators, J. Differ. Equa., 1993, 104, 243-262. doi: 10.1006/jdeq.1993.1071

    CrossRef Google Scholar

    [6] J. DieudonnšŠ, Foundations of Modern Analysis, Academic Press, New York, London, 1969.

    Google Scholar

    [7] S. Fu, Z. Qiao and Z. Wang, Eigenvalues and eigenfunctions of a schr$\ddot{o}$dinger operator associated with a finite combination of Dirac-Delta functions and CH peakons, Journal of Nonlinear Modeling and Analysis, 2021, 3(1), 131–144.

    $\ddot{o}$dinger operator associated with a finite combination of Dirac-Delta functions and CH peakons" target="_blank">Google Scholar

    [8] S. Ge, W. Wang and J. Suo, Dependence of eigenvalues of a class of fourth-order Sturm-Liouville problems on the boundary, Applied Mathematics and Computation, 2013, 220, 268–276. doi: 10.1016/j.amc.2013.06.029

    CrossRef Google Scholar

    [9] L. Greenberg and M. Marletta, The code SLEUTH for solving fourth-order Sturm-Liouville problems, ACM Trans. Math. Softw., 1997, 23, 453–493. doi: 10.1145/279232.279231

    CrossRef Google Scholar

    [10] L. Greenberg, An oscillation method for fourth order self-adjoint two-point boundary value problems with nonlinear eigenvalues, SIAM J. Math. Anal., 1991, 22, 1021–1042. doi: 10.1137/0522067

    CrossRef Google Scholar

    [11] L. Greenberg and M. Marletta, Oscillation theory and numerical solution of fourth order Sturm-Liouville problems, IMA J. Numer. Anal., 1995, 15, 319–356. doi: 10.1093/imanum/15.3.319

    CrossRef Google Scholar

    [12] L. Greenberg and M. Marletta, Numerical methods for higher order Sturm-Liouville problems, J. Comput. Appl. Math., 2000, 125, 367–383. doi: 10.1016/S0377-0427(00)00480-5

    CrossRef Google Scholar

    [13] Q. Kong, H. Wu and A. Zettl, Dependence of eigenvalues on the problems, Math. Nachr., 1997, 188, 173–201. doi: 10.1002/mana.19971880111

    CrossRef Google Scholar

    [14] Q. Kong and A. Zettl, Dependence of eigenvalues of Sturm-Liouville problems on the boundary, J. Differ. Equat., 1996, 126, 389–407. doi: 10.1006/jdeq.1996.0056

    CrossRef Google Scholar

    [15] Q. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differ. Equa., 1996, 131, 1–19. doi: 10.1006/jdeq.1996.0154

    CrossRef Google Scholar

    [16] Q. Kong and A. Zettl, Linear ordinary differential equations, in inequalities and applications, R. P. Agarwal, (Ed.), WSSIAA, 1994, 3, 381–397.

    Google Scholar

    [17] K. Li, J. Sun and X. Hao, Eigenvalues of regular fourth-order Sturm-Liouville problems with transmission conditions, Math. Methods Appl. Sci., 2017, 40, 3538–3551. doi: 10.1002/mma.4243

    CrossRef Google Scholar

    [18] X. Lv and J. Ao, Eigenvalues of fourth-order boundary value problems with self-adjoint canonical boundary conditions, Bull. Malays. Math. Sci. Soc., 2020, 43, 833–846. doi: 10.1007/s40840-018-00714-4

    CrossRef Google Scholar

    [19] X. Lv, J. Ao and A. Zettl, Dependence of eigenvalues of fourth-order differential equations with discontinuous boundary conditions on the problem, J. Math. Anal. Appl., 2017, 456, 671–685. doi: 10.1016/j.jmaa.2017.07.021

    CrossRef Google Scholar

    [20] Y. Liu and Q. Li, Existence and uniqueness of solutions and lyapunov-type inequality for a mixed fractional boundary value problem, Journal of Nonlinear Modeling and Analysis, 2022, 4(2), 207–219.

    Google Scholar

    [21] M. Lord, M. Scott and H. Watts, Computation of eigenvalue/eigenfunctions for two-point boundary-value problems, Applied Non-Linear Analysis, V. Lakshmikantham (Ed.), Academic Press, 1979, 635–656.

    Google Scholar

    [22] J. P$\ddot{o}$schel and E. Trubowitz, Inverse Spectral Theory, Academic Press, New York, London, Sydney, 1987.

    Google Scholar

    [23] J. Suo and W. Wang, Eigenvalues of a class of regular fourth-order Sturm-Liouville problems, Applied Mathematics and Computation, 2012, 218, 9716–9729. doi: 10.1016/j.amc.2012.03.015

    CrossRef Google Scholar

    [24] A. Wang, J. Sun and A. Zettl, The classification of self-adjoint boundary conditions: Separated coupled and mixed, J. Funct. Anal., 2008, 255, 1554–1573. doi: 10.1016/j.jfa.2008.05.003

    CrossRef Google Scholar

    [25] R. Wang and Z. Wu, Lecture of Ordinary Differential Equations, Beijing People's Education Press, 1963, 198–207, (in chinese).

    Google Scholar

    [26] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 121, 2005.

    Google Scholar

    [27] H. Zhang and J. Ao, Eigenvalue properties of third-order boundary value problems with distributional potentials, Acta Mathematicae Applicatae Sinica, English Series, 2022, 38(4), 861–881. doi: 10.1007/s10255-022-1020-9

    CrossRef Google Scholar

    [28] H. Zhang, J. Ao and F. Bo, Eigenvalues of fourth-order boundary value problems with distributional potentials, AIMS Mathematics, 2022, 7(5), 7294–7317. doi: 10.3934/math.2022407

    CrossRef Google Scholar

    [29] H. Zhang, J. Ao and M. Li, Dependence of Eigenvalues of Sturm-Liouville problems with eigenparameter-dependent boundary conditions and interface conditions, Mediterr. J. Math., 2022, 19, 1–17. doi: 10.1007/s00009-021-01753-1

    CrossRef Google Scholar

    [30] H. Zhang, J. Ao and D. Mu, Eigenvalues of discontinuous third-order boundary value problems with eigenparameter-dependent boundary conditions, J. Math. Anal. Appl., 2022, 506, 125680. doi: 10.1016/j.jmaa.2021.125680

    CrossRef Google Scholar

    [31] M. Zhang and K. Li, Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions, Appl. Math. Comput., 2020, 378, 125214.

    Google Scholar

Article Metrics

Article views(881) PDF downloads(208) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint