Citation: | Oualid Zentar, Mohamed Ziane, Mohammed Al Horani, Ismail Zitouni. THEORETICAL STUDY OF A CLASS OF $\zeta$-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS IN A BANACH SPACE[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2808-2821. doi: 10.11948/20230436 |
A study of an important class of nonlinear fractional differential equations driven by $ \zeta $-Caputo type derivative in a Banach space framework is presented. The classical Banach contraction principle associated with the Bielecki-type norm and a fixed-point theorem with respect to convex-power condensing operators are used to achieve some existence results. Two illustrative examples are provided to justify the theoretical results.
[1] | S. Abbas, M. Benchohra and G. M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015. |
[2] | A. Aghajani, E. Pourhadi and J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 2013, 16, 962–977. doi: 10.2478/s13540-013-0059-y |
[3] | B. Ahmad, A. F. Albideewi, S. K. Ntouyas and A. Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations, Cubo (Temuco), 2021, 23, 225–237. doi: 10.4067/S0719-06462021000200225 |
[4] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 2017, 44, 460–481. doi: 10.1016/j.cnsns.2016.09.006 |
[5] | T. V. An, N. D. Phu and N. V. Hoa, A survey on non-instantaneous impulsive fuzzy differential equations involving the generalized Caputo fractional derivative in the short memory case, Fuzzy Sets and Systems., 2022, 443, 160–197. doi: 10.1016/j.fss.2021.10.008 |
[6] | H. Arfaoui, New numerical method for solving a new generalized American options under $\Psi$-Caputo time-fractional derivative Heston model, to appear in Rocky Mountain J. Math. |
[7] |
M. Awadalla, N. Yameni, Y. Yves and K. Asbeh, $\Psi$-Caputo logistic population growth model, J. Math., 2021, 2021, 1–9.
$\Psi$-Caputo logistic population growth model" target="_blank">Google Scholar |
[8] |
Z. Baitiche, C. Derbazi, J. Alzabut, M. E. Samei, M. K. Kaabar and Z. Siri, Monotone iterative method for $\Psi$-Caputo fractional differential equation with nonlinear boundary conditions, Fractal Fract., 2021, 5(3), 81. doi: 10.3390/fractalfract5030081
CrossRef $\Psi$-Caputo fractional differential equation with nonlinear boundary conditions" target="_blank">Google Scholar |
[9] | Z. Baitiche, C. Derbazi and M. Matar, Ulam-stability results for a new form of nonlinear fractional Langevin differential equations involving two fractional orders in the $\psi$–Caputo sense, Applicable Analysis., 2021. |
[10] | J. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, Lectures Notes in Pure and Applied Mathematics, 50, Marcel Dekker, New York, 1980. |
[11] | K. Diethelm and N. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 2002, 265, 229–248. doi: 10.1006/jmaa.2000.7194 |
[12] |
A. El Mfadel, S. Melliani and M. Elomari, Existence results for nonlocal Cauchy problem of nonlinear $\Psi$-Caputo type fractional differential equations via topological degree methods, Advances in the Theory of Nonlinear Analysis and its Application, 2022, 6(2), 270–279. doi: 10.31197/atnaa.1059793
CrossRef $\Psi$-Caputo type fractional differential equations via topological degree methods" target="_blank">Google Scholar |
[13] | Q. Fan, G. -C. Wu and H. Fu, A note on function space and boundedness of the general fractional integral in continuous time random walk, J. Nonlin. Math. Phys., 2022, 29(1), 95–102. doi: 10.1007/s44198-021-00021-w |
[14] | A. Granas and J. Dugundji, Fixed Point Theory, New York (NY), Springer, 2003. |
[15] | M. A. Hammad, Conformable fractional martingales and some convergence theorems, Mathematics, 2022, 10, 6. |
[16] | M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter, Berlin, 2001. |
[17] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, Netherlands, 2006, 204. |
[18] | T. Kosztołowicz and A. Dutkiewicz, Subdiffusion equation with Caputo fractional derivative with respect to another function, Phys. Rev. E, 2021, 104(1), 014118. doi: 10.1103/PhysRevE.104.014118 |
[19] | F. Norouzi and G. N'Guérékata, A study of $\psi$-Hilfer fractional differential system with application in financial crisis, Chaos Solitons Fractals: X, 2021, 6, 1–15. |
[20] | J. Sousa and E. Oliveira, Existence, uniqueness, estimation and continuous dependence of the solutions of a nonlinear integral and an integrodifferential equations of fractional order, ArXiv Preprint ArXiv: 1806.01441, 2018. |
[21] | J. Sun and X. Zhang, The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations, Acta Math. Sin., 2005, 48, 439–446. |
[22] |
M. Tayeb, H. Boulares, A. Moumen and M. Imsatfia, Processing fractional differential equations using $\psi$-Caputo derivative, Symmetry, 2023, 15(4), 955. doi: 10.3390/sym15040955
CrossRef $\psi$-Caputo derivative" target="_blank">Google Scholar |
[23] | F. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of Gamma functions, Pacific J. Math., 1951, 1, 133–142. doi: 10.2140/pjm.1951.1.133 |
[24] | J. Vanterler and C. Sousa, Existence results and continuity dependence of solutions for fractional equations, Differ Equ Appl., 2020, 12, 377–396. |