Citation: | Rana Alkhal, Mouna Kratou, Kamel Saoudi. COMBINED EFFECTS OF SINGULAR AND HARDY NONLINEARITIES IN FRACTIONAL KIRCHHOFF CHOQUARD EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 76-109. doi: 10.11948/20230429 |
The aim of this paper is to investigate the existence and the multiplicity of solutions to the singular Kirchhoff non-local problem with Hardy and Choquard nonlinearities. The problem is defined as follows:
$ \begin{equation*} \left\{ \begin{array}{ll} &\quad M\Big( \int_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}dx dy\Big) -\Delta^s_p u-\alpha \frac{|u|^{p-2}u}{|x|^{sp}}\\ &=\lambda f(x) u^{-\gamma}+ g(x) \Big( \int_{\Omega}\frac{u^{p_{\mu, s}^*}(y)}{|x-y|^\mu}dy\Big)u^{p_{\mu, s}^*-1} \; \text{in}\; \Omega, \\ &u>0, \;\;\;\;\quad \text{in }\Omega, \\ &u=0, \;\;\;\;\quad \text{in }\mathbb{R}^{N}\setminus \Omega, \end{array} \right. \end{equation*} $
where, $ \Omega\subset \mathbb{R}^N $ is a bounded domain, $ s\in (0, 1) $, $ N>sp $, $ \gamma\in (0, 1), $ $ \alpha, $ $ \lambda $ are two positive real parameters $ 0<\mu<N $, $ p^*_{s} = \frac{Np}{N - sp} $ is the fractional critical Sobolev exponent, while $ p_{\mu, s} = \frac{(Np - \mu)}{(N-sp)} $ and $ p_{\mu, s}^*=\Big(\frac{p}{2}\Big).\Big(\frac{2N-\mu}{N-sp}\Big) $ denote the critical and upper critical exponent in the sense of Hardy Littlewood Sobolev inequality respectively, $ M(t) = a + b{t}^{\theta - 1}, \;\text{with } a>0, b>0 $ and $ \theta\in \Big(1, \min\{ 2p_{\mu, s}^*/p, p_{\mu, s}^*\}\Big). $ Furthermore, $ f $ is a non-negative weight and $ g $ is a sign-changing weight. The novelty in this work lies in the combination of a fractional framework and a singular term with the Hardy and Choquard nonlinearities. To establish the existence of at least two positive solutions for the problem, the Nehari manifold approach is employed.
[1] | D. Applebaum, Lévy Processes and Stochastic Calculus, Second Ed., Camb. Stud. Adv. Math., Cambridge University Press, Cambridge, 2009. |
[2] | H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proceedings of the American Mathematical Society, 1983, 88(3), 486–490. doi: 10.1090/S0002-9939-1983-0699419-3 |
[3] | A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 2004, 295, 225–236. doi: 10.1016/j.jmaa.2004.03.034 |
[4] | P. D'Avenia, G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 2015, 25, 1447–1476. doi: 10.1142/S0218202515500384 |
[5] | P. Drabek and S. I. Pohozaev, Positive solutions for the p-Laplacian: Application of the fibering method, Proc. Royal Soc. Edinburgh Sect A, 1997, 127, 703–726. doi: 10.1017/S0308210500023787 |
[6] | A. Fiscella and P. K. Mishra, Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities, Manuscripta Mathematica, 2021, 12, 1–45. |
[7] | A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Analysis: Theory, Methods and Applications, 2014, 94, 156–170. |
[8] | R. L. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Am. Math. Soc., 2008, 21(4), 925–950. |
[9] | F. Gao and M. Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math., 2018, 61, 1219–1242. doi: 10.1007/s11425-016-9067-5 |
[10] | S. Goyal and T. Sharma, Fractional Kirchhoff Hardy problems with weighted Choquard and singular nonlinearity, Electronic Journal of Differential Equations, 2022, 25, 1–29. |
[11] | G. Kirchhoff, Mechanik (in German), Leipzig, Teubner, 1883. |
[12] | E. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 1977, 57, 93–105. doi: 10.1002/sapm197757293 |
[13] | E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, AMS, Providence, Rhode Island, 2001. |
[14] | V. Moroz and J. V. Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 2013, 265, 153–184. doi: 10.1016/j.jfa.2013.04.007 |
[15] | T. Mukherjee and K. Sreenadh, On doubly nonlocal p-fractional coupled elliptic system, Topol. Methods Nonlinear Anal., 2018, 51, 609–636. |
[16] | S. Pekar, Untersuchung uber die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. |
[17] | K. Perera, M. Squassina and Y. Yang, Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr., 2016, 289, 332–342. doi: 10.1002/mana.201400259 |
[18] | F. Wang and M. Xiang, Combined effects of Choquard and singular nonlinearities in fractional Kirchhoff problems, Advances in Nonlinear Analysis, 2021, 10(1), 636–658. |
[19] | M. Willem, Functional Analysis: Fundamentals and Applications, Springer Science and Business Media, 2013. |
[20] | Y. Yang, Y. L. Wang and Y. Wang, Existence of solutions for critical Choquard problem with singular coefficients. arXiv: 1905.08401. |