2024 Volume 14 Issue 5
Article Contents

Qun Bin, Wentao Huang, Jing Li, Shi Liang. TRAVELING FRONTS OF A REAL SUPERCRITICAL QUINTIC GINZBURG-LANDAU EQUATION COUPLED BY A SLOW DIFFUSION MODE[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2862-2876. doi: 10.11948/20230457
Citation: Qun Bin, Wentao Huang, Jing Li, Shi Liang. TRAVELING FRONTS OF A REAL SUPERCRITICAL QUINTIC GINZBURG-LANDAU EQUATION COUPLED BY A SLOW DIFFUSION MODE[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2862-2876. doi: 10.11948/20230457

TRAVELING FRONTS OF A REAL SUPERCRITICAL QUINTIC GINZBURG-LANDAU EQUATION COUPLED BY A SLOW DIFFUSION MODE

  • In this paper, we investigate the existence of traveling front solutions for a class of quintic Ginzburg-Landau equations coupled with a slow diffusion mode. By employing the theory of geometric singular perturbations, we turn the problem into a geometric perturbation problem. We demonstrate the intersection property of the critical manifold and further validate the existence of heteroclinic orbits by computing the zeros of the Melnikov function on the critical manifold. The results demonstrate that under certain parameters, there is 1 or 2 heteroclinic solutions, confirming the existence of traveling front solutions for the considered quintic Ginzburg-Landau equation coupled with a slow diffusion mode.

    MSC: 35Q56, 35C07, 37G15
  • 加载中
  • [1] S. Behera and A. Khare, Classical $\phi^6$-field theory in (1 + 1) dimensions. A model for structural phase transitions, Pramana, 1980, 15, 245–269. doi: 10.1007/BF02847222

    CrossRef $\phi^6$-field theory in (1 + 1) dimensions. A model for structural phase transitions" target="_blank">Google Scholar

    [2] M. Cross and P. Hohenberg, Pattern formation outside of equilibrium, Rev. Modern Phys., 1993, 65, 851–1112. doi: 10.1103/RevModPhys.65.851

    CrossRef Google Scholar

    [3] R. DiPrima, W. Eckhaus and L. Segel, Non-linear wave-number interaction in near-critical two-dimensional flows, J. Fluid Mech., 1971, 49, 705–744. doi: 10.1017/S0022112071002337

    CrossRef Google Scholar

    [4] A. Doelman, R. Gardner and T. Kaper, Large stable pulse solutions in reaction-diffusion equations, Indiana Univ. Math. J., 2001, 50, 443–507. doi: 10.1512/iumj.2001.50.1873

    CrossRef Google Scholar

    [5] A. Doelman, G. Hek and N. Valkhoff, Algebraically decaying pulses in a Ginzburg-Landau system with a neutrally stable mode, Nonlinearity, 2007, 20, 357–389. doi: 10.1088/0951-7715/20/2/007

    CrossRef Google Scholar

    [6] A. Doelman, G. Hek and N, Valkhoff, Stabilization by slow diffusion in a real Ginzburg-Landau system, J. Nonlinear Sci., 2004, 14, 237–278. doi: 10.1007/BF02666022

    CrossRef Google Scholar

    [7] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 1979, 31, 53–98. doi: 10.1016/0022-0396(79)90152-9

    CrossRef Google Scholar

    [8] V. Ginzburg and L. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz., 1950, 1064–1082.

    Google Scholar

    [9] P. Hohenberg and A. Krekhov, An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns, Phys. Rep., 2015, 572, 1–42. doi: 10.1016/j.physrep.2015.01.001

    CrossRef Google Scholar

    [10] T. Kaper, Systems theory for singular perturbation problems. Analyzing multiscale phe- nomena using singular perturbation methods. American Mathematical Society short course, January 1998, 56, Baltimore, Maryland, 1999, 85.

    Google Scholar

    [11] E. Kengne, W. Liu, L. English and B. Malomed, Ginzburg-Landau models of nonlinear electric transmission networks, Phys. Rep., 2022, 982, 1–124. doi: 10.1016/j.physrep.2022.07.004

    CrossRef Google Scholar

    [12] Y. Kuramoto, Chemical Oscillations, Wave And Turbulence, Springer, New York, 1984.

    Google Scholar

    [13] L. Landau, On the theory of phase transitions, in collected papers of L. D. Landau, D. ter Haar ed, Pergamon, 1965, 193–216.

    Google Scholar

    [14] P. Marcq, H. Chaté and R. Conte, Exact solutions of the one-dimensional quintic complex Ginzburg-Landau equation, Phys. D, 1994, 73, 305–317. doi: 10.1016/0167-2789(94)90102-3

    CrossRef Google Scholar

    [15] S. Naghshband and M. Araghi, Solving generalized quintic complex Ginzburg-Landau equation by homotopy analysis method, Ain Shams Eng. J., 2016, 9, 607–613.

    Google Scholar

    [16] A. Newell, T. Passot and J. Lega, Order parameter equations for patterns, Annu. Rev. Fluid Mech., 1993, 25, 399–453. doi: 10.1146/annurev.fl.25.010193.002151

    CrossRef Google Scholar

    [17] A. Newell and J. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech., 1969, 38, 279–303. doi: 10.1017/S0022112069000176

    CrossRef Google Scholar

    [18] A. Newell and J. Whitehead, Review of the finite bandwidthconcept, in proceedings of the international union of theoretical and applied mechanics, symposium on instability of continuous systems (1969), H. Leipholz ed, Springer-Verlag, Berlin, 1971, 279–303.

    Google Scholar

    [19] P. Pieribyline and G. Strinatibyline, Strong-coupling limit in the evolution from BCS superconductivity to Bose-Einstein condensation, Phys. Rev. B., 2000, 61, 15370–15381. doi: 10.1103/PhysRevB.61.15370

    CrossRef Google Scholar

    [20] C. Robinson, Sustained resonance for a nonlinear system with slowly varying coefficients, SIAM J. Math. Anal., 1983, 14, 847–860. doi: 10.1137/0514066

    CrossRef Google Scholar

    [21] B. Rosenstein and D. Li, Ginzburg-Landau theory of type Ⅱ superconductors in magnetic field, Rev. Modern Phys., 2010, 82, 109–168. doi: 10.1103/RevModPhys.82.109

    CrossRef Google Scholar

    [22] T. Rossides, D. Lloyd, S. Zelik and M. Turner, The dynamics of interacting multi-pulses in the one-dimensional quintic complex Ginzburg-Landau equation, SIAM J. Appl. Dyn. Syst., 2023, 22, 2242–2281. doi: 10.1137/22M1519195

    CrossRef Google Scholar

    [23] L. Segel, Distant side-walls cause slow amplitude modulation of cellular convection, J. Fluid Mech., 1969, 38, 203–224. doi: 10.1017/S0022112069000127

    CrossRef Google Scholar

    [24] L. Sieberer, M. Buchhold and S. Diehl, Keldysh field theory for driven open quantum systems, Rep. Progr. Phys., 2016, 79, 096001. doi: 10.1088/0034-4885/79/9/096001

    CrossRef Google Scholar

    [25] J. Soto-Crespo, N. Akhmediev and V. Afanasjev, Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation, J. Opt. Soc. Amer. B Opt. Phys., 1996, 13, 1439–1449. doi: 10.1364/JOSAB.13.001439

    CrossRef Google Scholar

    [26] K. Stewartson and J. Stuart, A nonlinear instability theory for a wave system in plane poiseuille flow, J. Fluid Mech., 1971, 48, 529–545. doi: 10.1017/S0022112071001733

    CrossRef Google Scholar

    [27] M. Tu, J. Shen and Z. Zhou, Traveling fronts of a real supercritical Ginzburg-Landau equation coupled by a slow diffusion, Qual. Theory Dyn. Syst., 2018, 17, 29–48. doi: 10.1007/s12346-017-0264-x

    CrossRef Google Scholar

    [28] S. Yao, E. IIhan, P. Veeresha and H. Baskonus, A powerful iterative approach for quintic complex Ginzburg-Landau equation within the frame of fractional operator, Fractals, 2021, 29, 1.

    Google Scholar

Figures(3)

Article Metrics

Article views(838) PDF downloads(243) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint