Citation: | Ge Wang, Zhiying He, Mingliang Fang. UNICITY OF MEROMORPHIC FUNCTIONS CONCERNING DERIVATIVES-DIFFERENCE AND SMALL FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2845-2861. doi: 10.11948/20230454 |
In this paper, we study unicity of meromorphic functions concerning derivatives-differences and small functions and improve the results due to Chen and Zhang [Ann. Math. Ser.A 42 (2021)] and Liu and Chen [J. Korean Soc. Math. Educ. Ser. B: Pure Apple. Math. 30 (2023)]. Meanwhile, we give negative answer to the problems posed by Chen and Xu [Comput. Methods Funct. Theory 22 (2022)], Banerjee and Maity[Bull. Korean Math. Soc. 58 (2021)].
[1] | A. Banerjee and S. Maity, Meromorphic function partially shares small functions or values with its linear $c$-shift operator, Bull. Korean Math. Soc., 2021, 58(5), 1175–1192. |
[2] | B. Q. Chen and S. Li, Uniqueness problems on entire functions that share a small function with their difference operators, Adv. Difference Equ., 2014, 311, 11 pp. |
[3] | C. X. Chen and Z. X. Chen, Uniqueness of meromorphic functions and their differences, Acta. Math. Sinica (Chin. Ser.), 2016, 59(6), 821–834. |
[4] | C. X. Chen and R. R. Zhang, Uniqueness theorems related to difference operators of entire functions, Ann. Math. Ser. A, 2021, 42(1), 11–22. |
[5] | S. J. Chen and A. Z. Xu, Uniqueness of derivatives and shifts of meromorphic functions, Comput. Methods Funct. Theory, 2022, 22(2), 197–205. doi: 10.1007/s40315-021-00370-z |
[6] |
Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plan, Ramanujan J., 2008, 16(1), 105–129. doi: 10.1007/s11139-007-9101-1
CrossRef $f(z+\eta)$ and difference equations in the complex plan" target="_blank">Google Scholar |
[7] | Y. M. Chiang and S. J. Feng, On the growth of logarithmic differences difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc., 2009, 361(7), 3767–3791. doi: 10.1090/S0002-9947-09-04663-7 |
[8] | M. L. Fang, Uniqueness of meromorphic functions connected with differential polynomials, Adv. in Math. (China), 1995, 24(3), 244–249. |
[9] | R. Halburd, R. Korhonen and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Am. Math. Soc., 2014, 366(8), 4267–4298. doi: 10.1090/S0002-9947-2014-05949-7 |
[10] | W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964. |
[11] | Z. Y. He, J. B. Xiao and M. L. Fang, Unicity of meromorphic functions concerning differences and small functions, Open Math., 2022, 20(1), 447–459. doi: 10.1515/math-2022-0033 |
[12] | J. Heittokangas, R. Korhonen, I. Laine and J. Rieppo, Uniqueness of meromorphic functions sharing values with their shifts, Complex Var. Elliptic Equ., 2011, 56(1–4), 81–92. |
[13] | X. H. Huang and D. Liu, Uniqueness of entire functions that share small function with their difference polynomials, Pure Math., 2019, 9(3), 362–369. doi: 10.12677/PM.2019.93048 |
[14] | I. Lahiri, An entire function that shares a small function with its derivative and linear differential polynomial, Comput. Methods Funct. Theory, 2023, 23(3), 393–416. doi: 10.1007/s40315-022-00452-6 |
[15] | Y. H. Li and J. Y. Qiao, The uniqueness of meromorphic functions concerning small functions, Sci. China Ser. A, 2000, 43(6), 581–590. doi: 10.1007/BF02908769 |
[16] | X. M. Liu and J. F. Chen, Uniqueness related to higher order difference operators of entire functions, J. Korean Soc. Math. Educ. Ser. B: Pure Apple. Math., 2023, 30(1), 43–65. |
[17] | S. Majumder and R. K. Sarkar, Power of entire function sharing non-zero polynomials with it's linear differential polynomial, Comput. Methods Funct. Theory, 2023, 23(1), 23–48. doi: 10.1007/s40315-022-00439-3 |
[18] | S. Mallick and M. B. Ahamed, On uniqueness of a meromorphic function and its higher difference operators sharing two sets, Anal. Math. Phys., 2022, 12(3), 24pp. |
[19] | X. G. Qi and L. Z. Yang, Uniqueness of meromorphic functions concerning their shifts and derivatives, Comput. Methods Funct. Theory, 2020, 20(1), 159–178. doi: 10.1007/s40315-020-00304-1 |
[20] |
A. Roy and A. Banerjee, Entire function and its linear $C-$shift operator sharing a set of small functions CM, Complex Var. Elliptic Equ., 2023, 68(7), 1093–1118. doi: 10.1080/17476933.2022.2038583
CrossRef $C-$shift operator sharing a set of small functions CM" target="_blank">Google Scholar |
[21] | D. Q. Si, Meromorphic functions on annuli sharing finite sets with truncated multiplicity, J. Math. Anal. Appl., 2023, 520(2), 16 pp. |
[22] | P. L. Wang, D. Liu and M. L. Fang, The deficiency and value distribution of meromorphic functions concerning difference, Acta. Math. Sinica (Chin. Ser.), 2016, 59(3), 357–362. |
[23] | C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003. |
[24] | L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993. |