2024 Volume 14 Issue 5
Article Contents

Hui Yao, Wenqi Jin, Qixiang Dong. HYERS-ULAM-RASSIAS STABILITY OF κ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2903-2921. doi: 10.11948/20230481
Citation: Hui Yao, Wenqi Jin, Qixiang Dong. HYERS-ULAM-RASSIAS STABILITY OF κ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2903-2921. doi: 10.11948/20230481

HYERS-ULAM-RASSIAS STABILITY OF κ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

  • The paper is connected with the existence of solutions and Hyers-Ulam stability for a class of nonlinear fractional differential equations with κ-Caputo fractional derivative in boundary value problems. The existence and uniqueness results are obtained by utilizing the Banach fixed point theorem and Leray-Schauder nonlinear alternative theorem. In addition, two sufficient conditions to guarantee the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability of boundary value problems of fractional differential equations are also presented. Finally, theoretical results are illustrated by two numerical examples.

    MSC: 34A08, 34D20, 47H10
  • 加载中
  • [1] R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 2019. DOI: 10.1007/s40840-017-0569-6.

    CrossRef Google Scholar

    [2] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 2017, 44, 460–481. doi: 10.1016/j.cnsns.2016.09.006

    CrossRef Google Scholar

    [3] H. E. I. Badawi, Q. X. Dong and Z. D. Zhang, Boundary value problems of nonlinear variable coefficient fractional differential equations, American Journal of Applied Mathematics, 2019, 7(6), 170–176.

    Google Scholar

    [4] Y. Başci, S. Öğrekçi and A. Misir, On Ulam's type stability criteria for fractional integral equations including Hadamard type singular kernel, Turkish J. Math., 2020, 44(4), 1498–1509. doi: 10.3906/mat-1910-70

    CrossRef Google Scholar

    [5] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 2016, 51, 48–54. doi: 10.1016/j.aml.2015.07.002

    CrossRef Google Scholar

    [6] K. Diethelm and A. D. Freed, On the Solution of Nonlinear Fractional-Order Differential Equations used in the Modeling of Viscoplasticity, Springer Berlin Heidelberg, 1999. DOI: 10.1007/978-3-642-60185-9_24.

    Google Scholar

    [7] E. M. Elsayed, S. Harikrishnan and K. Kanagarajan, On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative, Acta Math. Sci., 2019, 39(6), 1568–1578. doi: 10.1007/s10473-019-0608-5

    CrossRef Google Scholar

    [8] F. D. Ge and C. H. Kou, Stability analysis by Krasnoselskii's fixed point theorem for nonlinear fractional differential equations, Appl. Math. Comput., 2015, 257, 308–316.

    Google Scholar

    [9] N. Heymans and I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheologica Acta, 2006, 45(5), 765–771. doi: 10.1007/s00397-005-0043-5

    CrossRef Google Scholar

    [10] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

    Google Scholar

    [11] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.

    Google Scholar

    [12] V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal., 2008, 69(10), 3337–3343. doi: 10.1016/j.na.2007.09.025

    CrossRef Google Scholar

    [13] R. Metzler, H. G. Kilian, T. F. Nonnenmacher and W. Schick, Relaxation in filled polymers: A fractional calculus approach, The Journal of Chemical Physics, 1995, 103(16), 7180–7186. doi: 10.1063/1.470346

    CrossRef Google Scholar

    [14] K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, New York, 1993.

    Google Scholar

    [15] S. Momani and Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A, 2006, 355(4–5), 271–279. doi: 10.1016/j.physleta.2006.02.048

    CrossRef Google Scholar

    [16] R. Murali, C. Park and A. P. Selvan, Hyers-Ulam stability for an Nth order differential equation using fixed point approach, J. Appl. Anal. Comput., 2021, 11(2), 614–631.

    Google Scholar

    [17] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, San Diego, 1999.

    Google Scholar

    [18] A. Simões and P. Selvan, Hyers-Ulam stability of a certain Fredholm integral equation, Turkish J. Math., 2022, 46(1), 87–98.

    Google Scholar

    [19] D. R. Smart, Fixed-Point Theorems, Cambridge University Press, London, 1974.

    Google Scholar

    [20] X. W. Su and S. Q. Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Comput. Math. Appl., 2011, 61(4), 1079–1087. doi: 10.1016/j.camwa.2010.12.058

    CrossRef Google Scholar

    [21] O. Tunç and C. Tunç, On Ulam stabilities of delay hammerstein integral equation, Symmetry, 2023, 15(9), 1736–1752. doi: 10.3390/sym15091736

    CrossRef Google Scholar

    [22] O. Tunç and C. Tunç, Ulam stabilities of nonlinear iterative integro-differential equations, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 2023, 117(118), 1–18.

    Google Scholar

    [23] D. C. S. J. Vanterler and D. O. E. Capelas, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60(JUL. ), 72–91.

    Google Scholar

    [24] D. C. S. J. Vanterler and D. O. E. Capelas, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 2018, 81, 50–56. doi: 10.1016/j.aml.2018.01.016

    CrossRef Google Scholar

    [25] G. T. Wang, Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval, Appl. Math. Lett., 2015, 47, 1–7. doi: 10.1016/j.aml.2015.03.003

    CrossRef Google Scholar

    [26] J. R. Wang, L. L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electronic Journal of Qualitative Theory of Differential Equations, 2011. DOI: 10.14232/ejqtde.2011.1.63.

    CrossRef Google Scholar

    [27] L. Yang, Application of Avery-Peterson fixed point theorem to nonlinear boundary value problem of fractional differential equation with the Caputo's derivative, Commun. Nonlinear Sci. Numer. Simul., 2012, 17(12), 4576–4584. doi: 10.1016/j.cnsns.2012.04.010

    CrossRef Google Scholar

    [28] A. Zada, L. Alam, J. F. Xu and W. Dong, Controllability and Hyers-Ulam stability of impulsive second order abstract damped differential systems, J. Appl. Anal. Comput., 2021, 11(3), 1222–1239.

    Google Scholar

    [29] A. Zada, S. Ali and T. X. Li, Analysis of a new class of impulsive implicit sequential fractional differential equations, Int. J. Nonlinear Sci. Numer. Simul., 2020, 21(6), 571–587. doi: 10.1515/ijnsns-2019-0030

    CrossRef Google Scholar

    [30] X. G. Zhang, L. S. Liu and Y. H. Wu, Multiple positive solutions of a singular fractional differential equation with negatively perturbed term, Math. Comput. Model., 2012, 55(3–4), 1263–1274. doi: 10.1016/j.mcm.2011.10.006

    CrossRef Google Scholar

Article Metrics

Article views(1202) PDF downloads(413) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint