2024 Volume 14 Issue 6
Article Contents

Qingkai Xu, Chunrui Zhang. BIFURCATION ANALYSIS AND CHAOS OF A MODIFIED HOLLING−TANNER MODEL WITH DISCRETE TIME[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3425-3449. doi: 10.11948/20240028
Citation: Qingkai Xu, Chunrui Zhang. BIFURCATION ANALYSIS AND CHAOS OF A MODIFIED HOLLING−TANNER MODEL WITH DISCRETE TIME[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3425-3449. doi: 10.11948/20240028

BIFURCATION ANALYSIS AND CHAOS OF A MODIFIED HOLLING−TANNER MODEL WITH DISCRETE TIME

  • In this paper, we consider a classical Holling-Tanner model with discrete time. The dynamical behavior of the model is given by using both theoretical analysis and numerical simulation. We use the central manifold theorem and bifurcation theory to demonstrate that the system will undergo Hopf bifurcation and Flip bifurcation at the positive equilibrium point. By using Lyapunov exponent, we show that the system can undergo the path from stability to Flip (Hopf) bifurcation to chaos, and then we verify the correctness of the theoretical results via numerical simulations.

    MSC: 34C23, 37N25
  • 加载中
  • [1] C. Arancibia-Ibarra, J. D. Flores, G. Pettet and P. Van Heijster, A Holling–Tanner predator–prey model with strong allee effect, International Journal of Bifurcation and Chaos, 2019, 29(11), 1930032. doi: 10.1142/S0218127419300325

    CrossRef Google Scholar

    [2] A. Arsie, C. Kottegoda and C. Shan, A predator-prey system with generalized holling type iv functional response and allee effects in prey, Journal of Differential Equations, 2022, 309, 704–740. doi: 10.1016/j.jde.2021.11.041

    CrossRef Google Scholar

    [3] M. Aziz-Alaoui, Study of a Leslie–Gower-type tritrophic population model, Chaos, Solitons & Fractals, 2002, 14(8), 1275–1293.

    Google Scholar

    [4] M. Aziz-Alaoui and M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and holling-type ii schemes, Applied Mathematics Letters, 2003, 16(7), 1069–1075. doi: 10.1016/S0893-9659(03)90096-6

    CrossRef Google Scholar

    [5] H. Chen and C. Zhang, Dynamic analysis of a Leslie–Gower-type predator–prey system with the fear effect and ratio-dependent holling iii functional response, Nonlinear Analysis: Modelling and Control, 2022, 27(5), 904–926.

    Google Scholar

    [6] J. -M. Chiou, H. -G. Müller and J. -L. Wang, Functional response models, Statistica Sinica, 2004, 675–693.

    Google Scholar

    [7] J. M. Cushing, Nonlinear semelparous Leslie models, Mathematical Biosciences & Engineering, 2005, 3(1), 17–36.

    Google Scholar

    [8] J. Dawes and M. Souza, A derivation of holling's type i, ii and iii functional responses in predator–prey systems, Journal of Theoretical Biology, 2013, 327, 11–22. doi: 10.1016/j.jtbi.2013.02.017

    CrossRef Google Scholar

    [9] H. Freedman and R. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bulletin of Mathematical Biology, 1993, 55(4), 817–827. doi: 10.1016/S0092-8240(05)80190-9

    CrossRef Google Scholar

    [10] P. Georgescu and Y. -H. Hsieh, Global dynamics of a predator-prey model with stage structure for the predator, SIAM Journal on Applied Mathematics, 2007, 67(5), 1379–1395. doi: 10.1137/060670377

    CrossRef Google Scholar

    [11] B. Ghanbari and S. Djilali, Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population, Chaos, Solitons & Fractals, 2020, 138, 109960.

    Google Scholar

    [12] C. S. Holling, The functional response of invertebrate predators to prey density, The Memoirs of the Entomological Society of Canada, 1966, 98(S48), 5–86. doi: 10.4039/entm9848fv

    CrossRef Google Scholar

    [13] B. Hong and C. Zhang, Bifurcations and chaotic behavior of a predator-prey model with discrete time, AIMS Mathematics, 2023, 8(6), 13390–13410. doi: 10.3934/math.2023678

    CrossRef Google Scholar

    [14] S. -B. Hsu and T. -W. Huang, Global stability for a class of predator-prey systems, SIAM Journal on Applied Mathematics, 1995, 55(3), 763–783. doi: 10.1137/S0036139993253201

    CrossRef Google Scholar

    [15] X. Jia, K. Huang and C. Li, Bifurcation analysis of a modified Leslie–Gower predator–prey system, International Journal of Bifurcation and Chaos, 2023, 33(02), 2350024. doi: 10.1142/S0218127423500244

    CrossRef Google Scholar

    [16] Y. A. Kuznetsov, I. A. Kuznetsov and Y. Kuznetsov, Elements of Applied Bifurcation Theory, 112, Springer, 1998.

    Google Scholar

    [17] T. Li, X. Zhang and C. Zhang, Pattern dynamics analysis of a space–time discrete spruce budworm model, Chaos, Solitons & Fractals, 2024, 179, 114423.

    Google Scholar

    [18] X. Li and Y. Liu, Transcritical bifurcation and flip bifurcation of a new discrete ratio-dependent predator-prey system, Qualitative Theory of Dynamical Systems, 2022, 21(4), 122. doi: 10.1007/s12346-022-00646-2

    CrossRef Google Scholar

    [19] X. Liu and D. Xiao, Complex dynamic behaviors of a discrete-time predator–prey system, Chaos, Solitons & Fractals, 2007, 32(1), 80–94.

    Google Scholar

    [20] R. Ma, Y. Bai and F. Wang, Dynamical behavior analysis of a two-dimensional discrete predator-prey model with prey refuge and fear factor, J. Appl. Anal. Comput, 2020, 10(4), 1683–1697.

    Google Scholar

    [21] P. S. Mandal and M. Banerjee, Stochastic persistence and stability analysis of a modified Holling–Tanner model, Mathematical Methods in the Applied Sciences, 2013, 36(10), 1263–1280. doi: 10.1002/mma.2680

    CrossRef Google Scholar

    [22] E. C. Mid and V. Dua, Parameter estimation using multiparametric programming for implicit euler's method based discretization, Chemical Engineering Research and Design, 2019, 142, 62–77. doi: 10.1016/j.cherd.2018.11.032

    CrossRef Google Scholar

    [23] S. G. Mortoja, P. Panja and S. K. Mondal, Dynamics of a predator-prey model with stage-structure on both species and anti-predator behavior, Informatics in Medicine Unlocked, 2018, 10, 50–57. doi: 10.1016/j.imu.2017.12.004

    CrossRef Google Scholar

    [24] A. Oaten and W. W. Murdoch, Functional response and stability in predator-prey systems, The American Naturalist, 1975, 109(967), 289–298. doi: 10.1086/282998

    CrossRef Google Scholar

    [25] M. D. Okiye and M. Aziz-Alaoui, On the dynamics of a predator-prey model with the Holling-Tanner functional response, Mathematical Modelling & Computing in Biology and Medicine, 2002, 1, 270–278.

    Google Scholar

    [26] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, 1990, 64(8), 821. doi: 10.1103/PhysRevLett.64.821

    CrossRef Google Scholar

    [27] B. Roy, S. K. Roy, et al., Holling–Tanner model with Beddington–Deangelis functional response and time delay introducing harvesting, Mathematics and Computers in Simulation, 2017, 142, 1–14. doi: 10.1016/j.matcom.2017.03.010

    CrossRef Google Scholar

    [28] E. Sáez and E. González-Olivares, Dynamics of a predator-prey model, SIAM Journal on Applied Mathematics, 1999, 59(5), 1867–1878. doi: 10.1137/S0036139997318457

    CrossRef Google Scholar

    [29] G. T. Skalski and J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the holling type ii model, Ecology, 2001, 82(11), 3083–3092. doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2

    CrossRef Google Scholar

    [30] J. P. Tripathi, S. Bugalia, V. Tiwari and Y. Kang, A predator–prey model with Crowley–Martin functional response: A nonautonomous study, Natural Resource Modeling, 2020, 33(4), e12287. doi: 10.1111/nrm.12287

    CrossRef Google Scholar

    [31] C. Wang and X. Li, Stability and Neimark-Sacker bifurcation of a semi-discrete population model, J. Appl. Anal. Comput, 2014, 4(4), 419–435.

    Google Scholar

    [32] S. Wiggins, Introduction to Applied Nonlinear Dynamic Systems and Chaos 2D, 2000.

    Google Scholar

    [33] C. Xiang, J. Huang and H. Wang, Linking bifurcation analysis of holling–tanner model with generalist predator to a changing environment, Studies in Applied Mathematics, 2022, 149(1), 124–163. doi: 10.1111/sapm.12492

    CrossRef Google Scholar

    [34] Y. Yang, T. Q. Abdullah, G. Huang and Y. Dong, Mathematical analysis of sir epidemic model with piecewise infection rate and control strategies, Journal of Nonlinear Modeling and Analysis, 2023, 5(3), 524–539. http://jnma.ca; http://jnma.ijournal.cn.

    Google Scholar

    [35] S. Yu, Global stability of a modified Leslie-Gower model with Beddington-Deangelis functional response, Advances in Difference Equations, 2014, 2014, 1–14.

    Google Scholar

    [36] S. Yu, et al., Global asymptotic stability of a predator-prey model with modified Leslie-Gower and holling-type ii schemes, Discrete Dynamics in Nature and Society, 2012, 2012.

    Google Scholar

    [37] X. Zhang, C. Zhang and Y. Zhang, Pattern dynamics analysis of a time-space discrete Fitzhugh-Nagumo (FHN) model based on coupled map lattices, Computers & Mathematics with Applications, 2024, 157, 92–123.

    Google Scholar

    [38] Z. Zhu, Y. Chen, Z. Li and F. Chen, Stability and bifurcation in a Leslie–Gower predator–prey model with allee effect, International Journal of Bifurcation and Chaos, 2022, 32(03), 2250040. doi: 10.1142/S0218127422500407

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(709) PDF downloads(272) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint