2024 Volume 14 Issue 6
Article Contents

Yingying Li. LEVINSON'S CONJECTURE TO NEWTONIAN SYSTEMS WITH JUMPING NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3450-3457. doi: 10.11948/20240039
Citation: Yingying Li. LEVINSON'S CONJECTURE TO NEWTONIAN SYSTEMS WITH JUMPING NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3450-3457. doi: 10.11948/20240039

LEVINSON'S CONJECTURE TO NEWTONIAN SYSTEMS WITH JUMPING NONLINEARITY

  • This paper concerns the jumping nonlinear Newtonian systems with friction. We show the existence of periodic solutions by using Lyapunov's methods and the modular degree theory. Furthermore, we apply our main result to find periodic solutions in a classical suspension bridge model.

    MSC: 34C25
  • 加载中
  • [1] O. H. Amann, T. V. Kármán and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge, Federal Works Agency, 1941.

    Google Scholar

    [2] M. E. Anacleto, J. Llibre, C. Valls and C. Vidal, Limit cycles of discontinuous piecewise differential systems formed by linear centers in $\mathbb{R}^{2}$ and separated by two circles, Nonlinear Anal. Real World Appl., 2021. DOI: 10.1016/j.nonrwa.2020.103281.

    CrossRef $\mathbb{R}^{2}$ and separated by two circles" target="_blank">Google Scholar

    [3] N. Aravinth, T. Satheesh, R. Sakthivel, G. Ran and A. Mohammadzadeh, Input-output finite-time stabilization of periodic piecewise systems with multiple disturbances, Appl. Math. Comput., 2023. DOI: 10.1016/j.amc.2023.128080.

    CrossRef Google Scholar

    [4] A. Buică, J. Llibre and O. Makarenkov, Asymptotic stability of periodic solutions for nonsmooth differential equations with application to the nonsmooth Van Der Pol oscillator, SIAM J. Math. Anal., 2009, 40(6), 2478–2495. doi: 10.1137/070701091

    CrossRef Google Scholar

    [5] T. A. Burton and B. Zhang, Uniform ultimate boundedness and periodicity in functional differential equations, Tohoku Math. J., 1990, 42(1), 93–100.

    Google Scholar

    [6] T. A. Burton and S. Zhang, Unified boundedness, periodicity, and stability in ordinary and functional-differential equations, Ann. Mat. Pura Appl., 1986. DOI: 10.1007/BF01790540.

    CrossRef Google Scholar

    [7] V. Carmona, F. F. Sánchez and D. D. Novaes, Uniqueness and stability of limit cycles in planar piecewise linear differential systems without sliding region, Commun. Nonlinear Sci. Numer. Simul., 2023. DOI: 10.1016/j.cnsns.2023.107257.

    CrossRef Google Scholar

    [8] A. M. Fink, Convergence and almost periodicity of solutions of forced lienard equation, SIAM. J. Appl. Math., 1974, 26(1), 26–34. doi: 10.1137/0126004

    CrossRef Google Scholar

    [9] A. Fonda, Z. Schneider and F. Zanolin, Periodic oscillations for a nonlinear suspension bridge model, J. Comput. Appl. Math., 1994, 52(1–3), 113–140. doi: 10.1016/0377-0427(94)90352-2

    CrossRef Google Scholar

    [10] T. Furumochi and T. Naito, Periodic solutions of difference equations, Nonlinear Anal-Theor., 2009, 71(12), e2217–e2222. doi: 10.1016/j.na.2009.05.005

    CrossRef Google Scholar

    [11] J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large scale nonlinear oscillations in suspension bridges, Z. Angew. Math. Phys., 1989, 40(2), 172–200. doi: 10.1007/BF00944997

    CrossRef Google Scholar

    [12] L. D. Humphreys and P. J. Mckenna, Multiple periodic solutions for a nonlinear suspension bridge equation, IMA J. Appl. Math., 1999, 63(1), 37–49. doi: 10.1093/imamat/63.1.37

    CrossRef Google Scholar

    [13] T. Küpper, Y. Li and B. Zhang, Periodic solutions for dissipative-repulsive systems, Tohoku Math. J., 2000, 52(3), 321–329.

    Google Scholar

    [14] A. C. Lazer and P. J. Mckenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. Henri Poincaré, 1987, 4(3), 243–274. doi: 10.1016/s0294-1449(16)30368-7

    CrossRef Google Scholar

    [15] Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Adv. Nonlinear Stud., 2015, 15(1), 241–252. doi: 10.1515/ans-2015-0113

    CrossRef Google Scholar

    [16] Y. Li, H. Wang and X. Yang, Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23(6), 2607–2623.

    Google Scholar

    [17] A. Macrina, L. A. Mengütürk and M. C. Mengütürk, Captive jump processes for bounded random systems with discontinuous dynamics, Commun. Nonlinear Sci. Numer. Simul., 2024. DOI: 10.1016/j.cnsns.2023.107646.

    CrossRef Google Scholar

    [18] T. T. Nguyen and T. T. Nguyen, The inviscid limit of Navier-stokes equations for vortex-wave data on $\mathbb{R}^{2}$, SIAM J. Math. Anal., 2019, 51(3), 2575–2598. doi: 10.1137/19M1246602

    CrossRef $\mathbb{R}^{2}$" target="_blank">Google Scholar

    [19] C. Wang, X. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mt. J. Math., 2016, 46(5), 1717–1737.

    Google Scholar

    [20] H. Wang, Positive periodic solutions of singular systems, J. Diff. Eqs., 2010, 249(12), 2986–3002. doi: 10.1016/j.jde.2010.08.027

    CrossRef Google Scholar

    [21] T. Wu, J. D. Cao, L. L. Xiong, H. Y. Zhang and J. L. Shu, Sampled-data synchronization criteria for Markovian jumping neural networks with additive time-varying delays using new techniques, Appl. Math. Comput., 2022. DOI: 10.1016/j.amc.2021.126604.

    CrossRef Google Scholar

    [22] J. M. Xing, X. Yang and Y. Li, Affine-periodic solutions by averaging methods, Sci. China Math., 2018. DOI: 10.1007/s11425-016-0455-1.

    CrossRef Google Scholar

    [23] P. P. Zabreiko and M. A. Krasnosel'skii, Iterations of operators, and fixed points, Dokl. Akad. Nauk SSSR, 1971, 196(5), 1006–1009.

    Google Scholar

Article Metrics

Article views(771) PDF downloads(224) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint