Citation: | Yingying Li. LEVINSON'S CONJECTURE TO NEWTONIAN SYSTEMS WITH JUMPING NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3450-3457. doi: 10.11948/20240039 |
This paper concerns the jumping nonlinear Newtonian systems with friction. We show the existence of periodic solutions by using Lyapunov's methods and the modular degree theory. Furthermore, we apply our main result to find periodic solutions in a classical suspension bridge model.
[1] | O. H. Amann, T. V. Kármán and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge, Federal Works Agency, 1941. |
[2] |
M. E. Anacleto, J. Llibre, C. Valls and C. Vidal, Limit cycles of discontinuous piecewise differential systems formed by linear centers in $\mathbb{R}^{2}$ and separated by two circles, Nonlinear Anal. Real World Appl., 2021. DOI: 10.1016/j.nonrwa.2020.103281.
CrossRef $\mathbb{R}^{2}$ and separated by two circles" target="_blank">Google Scholar |
[3] | N. Aravinth, T. Satheesh, R. Sakthivel, G. Ran and A. Mohammadzadeh, Input-output finite-time stabilization of periodic piecewise systems with multiple disturbances, Appl. Math. Comput., 2023. DOI: 10.1016/j.amc.2023.128080. |
[4] | A. Buică, J. Llibre and O. Makarenkov, Asymptotic stability of periodic solutions for nonsmooth differential equations with application to the nonsmooth Van Der Pol oscillator, SIAM J. Math. Anal., 2009, 40(6), 2478–2495. doi: 10.1137/070701091 |
[5] | T. A. Burton and B. Zhang, Uniform ultimate boundedness and periodicity in functional differential equations, Tohoku Math. J., 1990, 42(1), 93–100. |
[6] | T. A. Burton and S. Zhang, Unified boundedness, periodicity, and stability in ordinary and functional-differential equations, Ann. Mat. Pura Appl., 1986. DOI: 10.1007/BF01790540. |
[7] | V. Carmona, F. F. Sánchez and D. D. Novaes, Uniqueness and stability of limit cycles in planar piecewise linear differential systems without sliding region, Commun. Nonlinear Sci. Numer. Simul., 2023. DOI: 10.1016/j.cnsns.2023.107257. |
[8] | A. M. Fink, Convergence and almost periodicity of solutions of forced lienard equation, SIAM. J. Appl. Math., 1974, 26(1), 26–34. doi: 10.1137/0126004 |
[9] | A. Fonda, Z. Schneider and F. Zanolin, Periodic oscillations for a nonlinear suspension bridge model, J. Comput. Appl. Math., 1994, 52(1–3), 113–140. doi: 10.1016/0377-0427(94)90352-2 |
[10] | T. Furumochi and T. Naito, Periodic solutions of difference equations, Nonlinear Anal-Theor., 2009, 71(12), e2217–e2222. doi: 10.1016/j.na.2009.05.005 |
[11] | J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large scale nonlinear oscillations in suspension bridges, Z. Angew. Math. Phys., 1989, 40(2), 172–200. doi: 10.1007/BF00944997 |
[12] | L. D. Humphreys and P. J. Mckenna, Multiple periodic solutions for a nonlinear suspension bridge equation, IMA J. Appl. Math., 1999, 63(1), 37–49. doi: 10.1093/imamat/63.1.37 |
[13] | T. Küpper, Y. Li and B. Zhang, Periodic solutions for dissipative-repulsive systems, Tohoku Math. J., 2000, 52(3), 321–329. |
[14] | A. C. Lazer and P. J. Mckenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. Henri Poincaré, 1987, 4(3), 243–274. doi: 10.1016/s0294-1449(16)30368-7 |
[15] | Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Adv. Nonlinear Stud., 2015, 15(1), 241–252. doi: 10.1515/ans-2015-0113 |
[16] | Y. Li, H. Wang and X. Yang, Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23(6), 2607–2623. |
[17] | A. Macrina, L. A. Mengütürk and M. C. Mengütürk, Captive jump processes for bounded random systems with discontinuous dynamics, Commun. Nonlinear Sci. Numer. Simul., 2024. DOI: 10.1016/j.cnsns.2023.107646. |
[18] | T. T. Nguyen and T. T. Nguyen, The inviscid limit of Navier-stokes equations for vortex-wave data on $\mathbb{R}^{2}$, SIAM J. Math. Anal., 2019, 51(3), 2575–2598. doi: 10.1137/19M1246602 |
[19] | C. Wang, X. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mt. J. Math., 2016, 46(5), 1717–1737. |
[20] | H. Wang, Positive periodic solutions of singular systems, J. Diff. Eqs., 2010, 249(12), 2986–3002. doi: 10.1016/j.jde.2010.08.027 |
[21] | T. Wu, J. D. Cao, L. L. Xiong, H. Y. Zhang and J. L. Shu, Sampled-data synchronization criteria for Markovian jumping neural networks with additive time-varying delays using new techniques, Appl. Math. Comput., 2022. DOI: 10.1016/j.amc.2021.126604. |
[22] | J. M. Xing, X. Yang and Y. Li, Affine-periodic solutions by averaging methods, Sci. China Math., 2018. DOI: 10.1007/s11425-016-0455-1. |
[23] | P. P. Zabreiko and M. A. Krasnosel'skii, Iterations of operators, and fixed points, Dokl. Akad. Nauk SSSR, 1971, 196(5), 1006–1009. |