Citation: | Miaomiao Wang, Guanghui Lu, Shuangping Tao. ESTIMATES FOR BILINEAR Θ-TYPE CALDERÓN-ZYGMUND OPERATORS AND THEIR COMMUTATORS ON NON-HOMOGENEOUS GENERALIZED WEIGHTED MORREY SPACES[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3404-3424. doi: 10.11948/20240026 |
Let $ (\mathcal{X}, d, \mu) $ be a non-homogeneous metric measure space satisfying geometrically doubling and upper doubling conditions. Under assumption that a dominating function $ \lambda $ satisfies $ \varepsilon $-weak reverse doubling condition, the authors prove that a bilinear $ \theta $-type Calderón-Zygmund operator $ \widetilde{T}_{\theta} $ is bounded from product of generalized weighted Morrey spaces $ \mathcal{L}^{p_{1}, \Phi, \varrho}_{\omega_{1}}(\mu) \times \mathcal{L}^{p_{2}, \Phi, \varrho}_{\omega_{2}}(\mu) $ into weak generalized weighted Morrey spaces $ W\mathcal{L}^{p, \Phi, \varrho}_{\nu_{\vec{\omega}}}(\mu) $, and also show that the commutator $ \widetilde{T}_{\theta, b_{1}, b_{2}} $ generated by $ b_{1}, b_{2}\in\widetilde{\mathrm{RBMO}}(\mu) $ and $ \widetilde{T}_{\theta} $ are bounded from product of spaces $ \mathcal{L}^{p_{1}, \Phi, \varrho}_{\omega_{1}}(\mu) \times \mathcal{L}^{p_{2}, \Phi, \varrho}_{\omega_{2}}(\mu) $ into spaces $ W\mathcal{L}^{p, \Phi, \varrho}_{\nu_{\vec{\omega}}}(\mu) $, where $ \Phi: (0, \infty)\rightarrow (0, \infty) $ is a Lebesgue measurable function, $ \varrho\in(1, \infty) $, $ \vec{p}=(p_{1}, p_{2}) $, $ \vec{\omega}=(\omega_{1}, \omega_{2})\in A^{\tau}_{\vec{p}}(\mu) $, $ \nu_{\vec{\omega}}\in RH_{r}(\mu) $ for $ r\in(1, \infty) $, and $ \frac{1}{p}=\frac{1}{p_{1}}+ $ $ \frac{1}{p_{2}} $ with $ 1<p_{1}, p_{2}<\infty $. Furthermore, the strong and weak type results for the $ \widetilde{T}_{\theta} $ and $ \widetilde{T}_{\theta, b_{1}, b_{2}} $ on the product of spaces $ \mathcal{L}^{p_{1}, \Phi, \varrho}_{\omega_{1}}(\mu) \times \mathcal{L}^{p_{2}, \Phi, \varrho}_{\omega_{2}}(\mu) $ are established.
[1] |
T. A. Bui and X. T. Duong, Hardy space, regularized $\mathrm{BMO}$ and the boundedness of Calderón-Zygmund operators on non-homogenous spaces, J. Geom. Anal., 2013, 23(2), 895–932. doi: 10.1007/s12220-011-9268-y
CrossRef $\mathrm{BMO}$ and the boundedness of Calderón-Zygmund operators on non-homogenous spaces" target="_blank">Google Scholar |
[2] | Y. Cao and J. Zhou, Morrey spaces for nonhomogeneous metric measure spaces, Abstr. Appl. Anal., 2013, 2013(1), Art. ID 196459, 1–8. |
[3] | F. Chiarenza, M. Frasca and P. Longo, $\mathrm{W}^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with $\mathrm{VMO}$ coefficients, Trans. Amer. Math. Soc., 1993, 336(2), 841–853. |
[4] | F. Chiarenza, M. Frasca and P. Longo, Interior $\mathrm{W}^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Math., 1991, 40(1), 149–168. |
[5] | J. Chou, X. Li, Y. Tong and H. Lin, Generalized weighted Morrey spaces on RD-spaces, Rocky Mountain J. Math., 2020, 50(4), 1277–1293. |
[6] | R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin-New York, 1971. v+160 pp. |
[7] | R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 1977, 83(4), 569–645. doi: 10.1090/S0002-9904-1977-14325-5 |
[8] | B. David and B. Jonathan, Subdyadic square functions and applications to weighted harmonic analysis, Adv. Math., 2017, 307, 72–99. doi: 10.1016/j.aim.2016.11.018 |
[9] | F. Deringoz, V. S. Guliyev, M. N. Omarova and M. A. Ragusa, Calderón-Zygmund operators and their commutators on generalized weighted Orlicz-Morrey spaces, Bull. Math. Sci., 2023, 13(1), Paper No. 2250004, 1–26. |
[10] | I. Ekincioglu, C. Keskin and A. Serbetci, Multilinear commutators of Calderón-Zygmund operator on generalized variable exponent Morrey spaces, Positivity, 2021, 25(4), 1551–1567. doi: 10.1007/s11117-021-00828-3 |
[11] |
X. Fu, D. Yang and D. Yang, The molecular characterization of the Hardy space $H^{1}$ on non-homogeneous metric measure spaces and its application, J. Math. Anal. Appl., 2014, 410(2), 1028–1042. doi: 10.1016/j.jmaa.2013.09.021
CrossRef $H^{1}$ on non-homogeneous metric measure spaces and its application" target="_blank">Google Scholar |
[12] | X. Fu, D. Yang and W. Yuan, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwanese J. Math., 2014, 18(2), 509–557. |
[13] | Y. Han, Boundedness of vector-valued Calderón-Zygmund operators on non-homogeneous metric measure spaces, J. Pseudo-Differ. Oper. Appl., 2023, 13(3), Paper No. 36, 1–27. |
[14] | G. Hu, Y. Meng and D. Yang, Weighted norm inequalities for multilinear Calderón-Zygmund operators on non-homogeneous metric measure spaces, Forum Math., 2014, 26(5), 1289–1322. doi: 10.1515/forum-2011-0042 |
[15] |
T. Hytönen, A framework for non-homogeneous analysis on metric spaces, and the $\mathrm{RBMO}$ space of Tolsa, Publ. Math., 2010, 54(2), 485–504.
$\mathrm{RBMO}$ space of Tolsa" target="_blank">Google Scholar |
[16] |
T. Hytönen, D. Yang and D. Yang, The Hardy space $H^{1}$ on non-homogeneous metric spaces, Math. Proc. Cambridge Philos. Soc., 2012, 153(1), 9–31. doi: 10.1017/S0305004111000776
CrossRef $H^{1}$ on non-homogeneous metric spaces" target="_blank">Google Scholar |
[17] |
R. Johnson and C. J. Neugebauer, Change of variable results for $A_{p}$- and reverse Hölder $RH_{R}$-classes, Trans. Amer. Math. Soc., 1991, 328, 639–666.
$A_{p}$- and reverse Hölder |
[18] | T. Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 2009, 282(2), 219–231. doi: 10.1002/mana.200610733 |
[19] | A. Kucukaslan, Equivalence of norms of the generalized fractional integral operator and the generalized fractional maximal operator on the generalized weighted Morrey spaces, Ann. Funct. Anal., 2020, 11(4), 1007–1026. doi: 10.1007/s43034-020-00066-w |
[20] | A. Kucukaslan, Generalized fractional integrals in the vanishing generalized weighted local and global Morrey spaces, Filomat, 2023, 37(6), 1893–1905. doi: 10.2298/FIL2306893K |
[21] | A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 2009, 220(4), 1222–1264. doi: 10.1016/j.aim.2008.10.014 |
[22] | H. Lin, S. Wu and D. Yang, Boundedness of certain commutators over non-homogeneous metric measure spaces, Anal. Math. Phys., 2017, 7(2), 187–218. doi: 10.1007/s13324-016-0136-6 |
[23] | Y. Liu and X. Fu, Boundedness of bilinear fractional integral operators on vanishing generalized Morrey spaces, J. Math. Study, 2022, 55(2), 109–123. doi: 10.4208/jms.v55n2.22.01 |
[24] | G. Lu, Multiple weighted estimates for bilinear Calderón-Zygmund operator and its commutator on non-homogeneous spaces, Bull. Sci. Math., 2023, 187, Paper No. 103311, 1–24. |
[25] |
G. Lu, Weighted estimates for $\theta$-type Calderón-Zygmund operator and its commutator on metric measure spaces, Complex Var. Elliptic Equ., 2022, 67(9), 2061–2075. doi: 10.1080/17476933.2021.1913731
CrossRef $\theta$-type Calderón-Zygmund operator and its commutator on metric measure spaces" target="_blank">Google Scholar |
[26] | G. Lu, Fractional type Marcinkiewicz integral and its commutator on nonhomogeneous spaces, Nagoya Math. J., 2022, 248, 801–822. doi: 10.1017/nmj.2022.6 |
[27] | G. Lu, Bilinear $\theta$-type Calderón-Zygmund operator and its commutator on non-homogeneous weighted Morrey spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 2021, 15(1), Paper No. 16, 1–15. |
[28] | G. Lu, Parameter $\theta$-type Marcinkiewicz integral on nonhomogeneous weighted generalized Morrey spaces, J. Funct. Spaces, 2020, 2020(1), 1–6. |
[29] | G. Lu and S. Tao, Estimate for some integral operators and their commutators on generalized fractional mixed Morrey spaces, Bull. Sci. Math., 2023, 187, Paper No. 103314, 1–23. |
[30] | G. Lu and S. Tao, Two-weighted estimate for generalized fractional integral and its commutator on generalized fractional Morrey spaces, J. Math. Study, 2023, 56(4), 345–356. doi: 10.4208/jms.v56n4.23.03 |
[31] | G. Lu and S. Tao, Generalized Morrey spaces over nonhomogeneous metric measure spaces, J. Aust. Math. Soc., 2017, 103(2), 268–278. doi: 10.1017/S1446788716000483 |
[32] | G. Lu, S. Tao and M. Wang, Estimates for bilinear generalized fractional integral operator and its commutator on generalized Morrey spaces over RD-spaces, Ann. Funct. Anal., 2024, 15(1), Paper No. 1, 1–47. |
[33] | G. Lu, S. Tao and M. Wang, Bilinear strongly generalized fractional integrals and their commutators over non-homogeneous metric spaces, Bull. Sci. Math., Minor Revision. |
[34] | G. Lu and M. Wang, Bilinear $\theta$-type Calderón-Zygmund operator and its commutator on product non-homogeneous generalized Morrey spaces, J. Appl. Anal. Comput., 2023, 13(5), 2922–2942. |
[35] | C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 1938, 43(1), 126–166. doi: 10.1090/S0002-9947-1938-1501936-8 |
[36] | B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 1972, 165, 261–274. |
[37] | E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 1994, 166(1), 95–103. doi: 10.1002/mana.19941660108 |
[38] | Y. Sawano, Generalized Morrey spaces for non-doubling measures, NoDEA Nonlinear Differential Equations Appl., 2008, 15(4–5), 413–425. doi: 10.1007/s00030-008-6032-5 |
[39] |
Y. Shi and X. Tao, Rough fractional integral and its multilinear commutators on $p$-adic generalized Morrey spaces, AIMS Math., 2023, 8(7), 17012–17026. doi: 10.3934/math.2023868
CrossRef $p$-adic generalized Morrey spaces" target="_blank">Google Scholar |
[40] | J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math., vol. 1381 Springer-Verlag, Berlin, 1989. vi+193 pp. |
[41] |
X. Tao and J. Wang, Commutators of multilinear $\theta$-type generalized fractional integrals on non-homogeneous metric measure spaces, AIMS Math., 2022, 7(6), 9627–9647. doi: 10.3934/math.2022535
CrossRef $\theta$-type generalized fractional integrals on non-homogeneous metric measure spaces" target="_blank">Google Scholar |
[42] |
X. Tolsa, $\mathrm{BMO}$, $H^{1}$, and Calderón-Zygmund operators for non-doubling measures, Math. Ann., 2001, 319(1), 89–149. doi: 10.1007/PL00004432
CrossRef $\mathrm{BMO}$, |
[43] |
X. Tolsa, Littlewood-Paley theory and the $T(1)$ theorem with non-doubling measures, Adv. Math., 2001, 164(1), 57–116. doi: 10.1006/aima.2001.2011
CrossRef $T(1)$ theorem with non-doubling measures" target="_blank">Google Scholar |
[44] | D. Wang, J. Zhou and B. Ma, Lipschitz estimates for commutator of fractional integral operators on non-homogeneous metric measure spaces, Appl. Math. J. Chinese Univ. Ser. B, 2020, 35(3), 253–264. doi: 10.1007/s11766-020-3319-8 |
[45] | H. Wang and R. Xie, Multilinear strongly singular integral operators on non-homogeneous metric measure spaces, J. Inequal. Appl., 2022, 2022(1), Paper No. 46, 1–21. |
[46] | M. Wang, S. Ma and G. Lu, Littlewood-Paley $g^{\ast}_{\lambda,\mu}$-function and its commutator on non-homogeneous generalized Morrey spaces, Tokyo J. Math., 2018, 41(2), 617–626. |
[47] | M. Wei, Boundedness criterion for some integral operators on generalized mixed Morrey spaces and generalized mixed Hardy-Morrey spaces, Banach J. Math. Anal., 2022, 16(1), Paper No. 8, 1–26. |
[48] | R. Xie, L. Shu and A. Sun, Boundedness for commutators of bilinear $\theta$-type Calderón-Zygmund operators on nonhomogeneous metric measure spaces, J. Funct. Spaces, 2017, 2017(1), 1–10. |
[49] | Y. Yan, J. Chen and H. Lin, Weighted Morrey spaces on non-homogeneous metric measure spaces, J. Math. Anal. Appl., 2017, 452(1), 335–350. doi: 10.1016/j.jmaa.2017.03.023 |
[50] | Y. Zhao, H. Lin and Y. Meng, Weighted estimates for iterated commutators of multilinear Calderón-Zygmund operators on non-homogeneous metric measure spaces, Sci. China Math., 2021, 64(3), 519–546. doi: 10.1007/s11425-018-9471-7 |