2024 Volume 14 Issue 6
Article Contents

Afaf Ahmima, Salim A. Messaoudi, Mohamed Alahyane. ON THE EXISTENCE AND STABILITY OF SOLUTIONS OF A TYPE-III THERMOELASTIC TRUNCATED TIMOSHENKO SYSTEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3385-3403. doi: 10.11948/20240019
Citation: Afaf Ahmima, Salim A. Messaoudi, Mohamed Alahyane. ON THE EXISTENCE AND STABILITY OF SOLUTIONS OF A TYPE-III THERMOELASTIC TRUNCATED TIMOSHENKO SYSTEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3385-3403. doi: 10.11948/20240019

ON THE EXISTENCE AND STABILITY OF SOLUTIONS OF A TYPE-III THERMOELASTIC TRUNCATED TIMOSHENKO SYSTEM

  • This paper is concerned with the well-posedness and stability of a one-dimensional thermoelastic truncated Timoshenko system of Type III. In order to establish the well-posedness, we first solve an auxiliary problem and give the proof in details, using the semigroup theory and some non traditional operators. Then, we use this result to solve our original problem. After that, we prove that the presence of the thermal effect in one equation only is strong enough to drive the system exponentially to rest, irrespective to any relation between the coefficients. By the end of the work, we present some numerical tests to illustrate our theoretical findings.

    MSC: 35B37, 35L55, 74D05, 93D15, 93D20
  • 加载中
  • [1] M. Akil, Y. Chitour, M. Ghader and A. Wehbe, Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary, Asymptotic Analysis, 2020, 119(3–4), 221–280. doi: 10.3233/ASY-191574

    CrossRef Google Scholar

    [2] A. M. Al-Mahdi, M. M. Al-Gharabli, A. Guesmia and S. A. Messaoudi, New decay results for a viscoelastic-type Timoshenko system with infinite memory, Z. Angew. Math. Phys., 2020, 72(22), 1–43.

    Google Scholar

    [3] T. A. Apalara, S. A. Messaoudi and A. A. Keddi, On the decay rates of Timoshenko system with second sound, Math. Methods Appl. Sci., 2016, 39(10), 2671–2684. doi: 10.1002/mma.3720

    CrossRef Google Scholar

    [4] T. A. Apalara, C. A. Raposo and A. Ige, Thermoelastic Timoshenko system free of second spectrum, Appl. Math. Lett., 2022, 126, 107793. doi: 10.1016/j.aml.2021.107793

    CrossRef Google Scholar

    [5] M. A. Ayadi, A. Bchatnia, M. Hamouda and S. Messaoudi, General decay in a Timoshenko-type system with thermoelasticity with second sound, Adva. Nonlinear Anal., 2015, 4(4), 263–284. doi: 10.1515/anona-2015-0038

    CrossRef Google Scholar

    [6] A. Djebabla and N. E. Tatar, Exponential stabilization of the Timoshenko system by a thermo-viscoelastic damping, J. Dyn. Control Syst., 2010, 16(2), 189–210. doi: 10.1007/s10883-010-9089-5

    CrossRef Google Scholar

    [7] I. Elishakoff, An equation both more consistent and simpler than the Bresse-Timoshenko equation, SMIA. Adva. Math. Mode. Expe. Methods Mater. Stru., 2009, 168, 249–254.

    Google Scholar

    [8] I. Elishakoff, Who developed the so-called Timoshenko beam theory?, Math. Mech. Solids., 2020, 25(1), 97–116. doi: 10.1177/1081286519856931

    CrossRef Google Scholar

    [9] I. Elishakoff, F. Hache and N. Challamel, Variational derivation of governing differential equations for truncated version of Bresse-Timoshenko beams, J. Sound Vib., 2018, 435, 409–430. doi: 10.1016/j.jsv.2017.07.039

    CrossRef Google Scholar

    [10] B. Feng, On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors, Discrete Contin. Dyn. Syst. Ser. A., 2017, 37(9), 4729–4751. doi: 10.3934/dcds.2017203

    CrossRef Google Scholar

    [11] B. Feng, D. S. Almeida, M. J. Dos Santos and L. G. Rosario Miranda, A new scenario for stability of nonlinear bresse-Timoshenko type systems with time dependent delay, ZAMM J. Appl. Math. Mech, Z. Angew. Math. Mech., 2020, 100(2), e201900160. doi: 10.1002/zamm.201900160

    CrossRef Google Scholar

    [12] B. Feng and X. G. Yang, Long-time dynamics for a nonlinear Timoshenko system with delay, Applicable Anal., 2017, 96(4), 606–625. doi: 10.1080/00036811.2016.1148139

    CrossRef Google Scholar

    [13] K. Ghennam and A. Djebabla, Energy decay result in a Timoshenko-type system of thermoelasticity of type III with weak damping, Math. Method. Appl. Sci., 2018, 41(10), 3868–3884. doi: 10.1002/mma.4873

    CrossRef Google Scholar

    [14] A. Guesmia and S. A. Messaoudi, On the control of a viscoelastic damped Timoshenko-type system, Appl. Math. Compt., 2008, 206(2), 589–597. doi: 10.1016/j.amc.2008.05.122

    CrossRef Google Scholar

    [15] A. Guesmia, S. A. Messaoudi and A. Soufyane, Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems, Electron. J. Differ. Equ., 2012, 193, 1–45.

    Google Scholar

    [16] D. S. A. Jùnior, A. J. A. Ramos and M. M. Freitas, Energy decay for damped Shear beam model and new facts related to the classical Timoshenko system, Appl. Math. Lett., 2021, 120, 107324. doi: 10.1016/j.aml.2021.107324

    CrossRef Google Scholar

    [17] D. S. A. Jùnior, A. J. A. Ramos, A. Soufyane, M. Cardoso and M. L. Santos, Issues related to the second spectrum, Ostrogradsky's energy and the stabilization of Timoshenko-Ehrenfest-type systems, Acta Mechanica., 2020, 231, 3565–3581. doi: 10.1007/s00707-020-02730-7

    CrossRef Google Scholar

    [18] D. S. A. Jùnior, A. J. A. Ramos, M. L. Santos and L. G. RM, Asymptotic behavior of weakly dissipative Bresse-Timoshenko system on influence of the second spectrum of frequency, ZAMM J. Appl. Math. Mech, Z. Angew. Math. Mech., 2018, 98(8), 1320–1333. doi: 10.1002/zamm.201700211

    CrossRef Google Scholar

    [19] D. S. A. Jùnior, M. L. Santos and J. E. Muñoz Rivera, Stability to weakly dissipative Timoshenko systems, Math. Methods Appl. Sci., 2013, 36(14), 1965–1976. doi: 10.1002/mma.2741

    CrossRef Google Scholar

    [20] D. S. A. Jùnior, M. L. Santos and J. E. M. Rivera, Stability to 1-d thermoelastic Timoshenko beam acting on shear force, Z. Angew. Math. Phys., 2014, 65(6), 1233–1249. doi: 10.1007/s00033-013-0387-0

    CrossRef Google Scholar

    [21] M. Kafini, S. A. Messaoudi and M. I. Mustafa, Energy decay result in a Timoshenko-type system of thermoelasticity of type III with distributive delay, J. Math. Phys., 2013, 54(10), 1–14.

    Google Scholar

    [22] A. Keddi, S. A. Messaoudi and M. Alahyane, On a thermoelastic Timoshenko system without the second spectrum: Existence and stability, J. Therm. Stre., 2023, 46(8), 823–838. doi: 10.1080/01495739.2023.2191662

    CrossRef Google Scholar

    [23] A. Malacarne and J. E. M. Rivera, Lack of exponential stability to Timoshenko system with viscoelastic Kelvin-Voigt type, Z. Angew. Math. Phys., 2016, 67(3), 1–10.

    Google Scholar

    [24] S. A. Messaoudi and A. Fareh, Energy decay in a Timoshenko-type system of ther- moelasticity of type III with different wave-propagation speeds, Arab. J. Math., 2013, 2(2), 199–207. doi: 10.1007/s40065-012-0061-y

    CrossRef Google Scholar

    [25] S. A. Messaoudi and J. H. Hassan, General and optimal decay in a memory-type Timoshenko system, J. Integ Equ. Appl., 2018, 30(1), 117–145.

    Google Scholar

    [26] S. A. Messaoudi and M. I. Mustafa, A stability result in a memory-type Timoshenko system, Dyn. syst. appl., 2009, 18(3), 457.

    Google Scholar

    [27] S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III, J. Math. Anal. Appl., 2008, 348(1), 298–307. doi: 10.1016/j.jmaa.2008.07.036

    CrossRef Google Scholar

    [28] A. J. A. Ramos, D. S. A. Jùnior, M. M. Freitas and M. J. Dos Santos, A new exponential decay result for one-dimensional porous dissipation elasticity from second spectrum viewpoint, Appl. Math. Lett., 2020, 101, 106061. doi: 10.1016/j.aml.2019.106061

    CrossRef Google Scholar

    [29] A. J. A. Ramos, D. S. A. Jùnior and L. G. R. Miranda, An inverse inequality for a Bresse- Timoshenko system without second spectrum of frequency, Archiv der Mathematik., 2020, 114, 709–719. doi: 10.1007/s00013-020-01452-5

    CrossRef Google Scholar

    [30] X. Tian and Q. Zhang, Stability of a Timoshenko system with local Kelvin-Voigt damping, Z. Angew. Math. Phys., 2017, 68(20), 1–15.

    Google Scholar

Figures(4)

Article Metrics

Article views(638) PDF downloads(417) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint