2024 Volume 14 Issue 6
Article Contents

Meixiang Chen. BIFURCATIONS AND EXACT SOLUTIONS FOR THE KUNDU EQUATION: DYNAMICAL APPROACH[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3377-3384. doi: 10.11948/20240012
Citation: Meixiang Chen. BIFURCATIONS AND EXACT SOLUTIONS FOR THE KUNDU EQUATION: DYNAMICAL APPROACH[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3377-3384. doi: 10.11948/20240012

BIFURCATIONS AND EXACT SOLUTIONS FOR THE KUNDU EQUATION: DYNAMICAL APPROACH

  • In this paper, we focus on the exact traveling wave solutions for the Kundu equation. By using the method of dynamical systems, we obtain bifurcations of the phase portraits of the corresponding planar dynamical system under different parameter conditions. Corresponding to different level curves, we derive all possible exact explicit parametric representations of the bounded solutions (including smooth periodic wave solutions, solitary solutions, kink wave solutions).

    MSC: 37L20, 34C37, 35C05, 37G10
  • 加载中
  • [1] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientist, Springer, Berlin, 1971.

    Google Scholar

    [2] A. Choudhuri and K. Porsezian, Dark-in-the-Bright solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms, Optics Communications, 2012, 285(3), 364–367. doi: 10.1016/j.optcom.2011.09.043

    CrossRef Google Scholar

    [3] N. A. Kudryashov, Implicit solitary waves for one of the generalized nonlinear Schrödinger equations, Mathematics, 2021, 9(23), 3024. doi: 10.3390/math9233024

    CrossRef Google Scholar

    [4] A. Kundu, Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations, J. Math. Phys., 1984, 25(12), 3433–3438. doi: 10.1063/1.526113

    CrossRef Google Scholar

    [5] J. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.

    Google Scholar

    [6] D. Qiu, J. He, Y. Zhang and K. Porsezian, The Darboux transformation of the Kundu-Eckhaus equation, Proc. R. Soc. A, 2015, 471, 20150236. doi: 10.1098/rspa.2015.0236

    CrossRef Google Scholar

    [7] D. Qiu and Y. Zhang, The explicit bound-state soliton of Kundu equation derived by Riemann–Hilbert problem, Applied Mathematics Letters, 2023, 135, 108443. doi: 10.1016/j.aml.2022.108443

    CrossRef Google Scholar

    [8] Y. Xiang, X. Dai, S. Wen, J. Guo and D. Fan, Controllable Raman soliton self-frequency shift in nonlinear metamaterials, Phys. Rev. A, 2011, 84, 033815. doi: 10.1103/PhysRevA.84.033815

    CrossRef Google Scholar

    [9] E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, et al., Solitons in magneto-optic waveguides with dual-power law nonlinearity, Phys. Lett. A, 2020, 384, 126697. doi: 10.1016/j.physleta.2020.126697

    CrossRef Google Scholar

    [10] Y. Zhang, J. Rao, Y. Cheng and J. He, Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation: N simple poles and one higher-order pole, Physica D, 2019, 399, 173–185. doi: 10.1016/j.physd.2019.05.008

    CrossRef Google Scholar

    [11] Y. Zhang, X. Tao and S. Xu, The bound-state soliton solutions of the complex modified KdV equation, Inverse Problems, 2020, 36, 065003. doi: 10.1088/1361-6420/ab6d59

    CrossRef Google Scholar

    [12] Z. Zhang and E. Fan, Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov-Ivanov equation under the zero/nonzero background, Z. Angew. Math. Phys., 2020, 71, 149. doi: 10.1007/s00033-020-01371-z

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(560) PDF downloads(179) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint